Solveeit Logo

Question

Question: If 3<sup>49</sup> (x + iy) = \(\left( \frac{3}{2} + \frac{\sqrt{}3}{2}i \right)^{100}\) and x = ky t...

If 349 (x + iy) = (32+32i)100\left( \frac{3}{2} + \frac{\sqrt{}3}{2}i \right)^{100} and x = ky then k is

A

13- \frac{1}{3}

B

Ö3

C

–Ö3

D

13- \frac{1}{\sqrt{}3}

Answer

13- \frac{1}{\sqrt{}3}

Explanation

Solution

Sol. (32+32i)100\left( \frac{3}{2} + \frac{\sqrt{3}}{2}i \right)^{100} = 3\sqrt { 3 } (32+12i)100\left( \frac{\sqrt{3}}{2} + \frac{1}{2}i \right)^{100}

= (3\sqrt{3})100 = (cos p/6 + i sinp/6)100 = 350

(cos100π6+isin100π6)\left( \cos\frac{100\pi}{6} + i\sin\frac{100\pi}{6} \right)3 cos 100π6\frac{100\pi}{6}= x,

3 sin 100π6\frac{100\pi}{6} = Ky,k = cot 100π6\frac{100\pi}{6} = cot 2π3\frac{2\pi}{3} = 13–\frac{1}{\sqrt{3}}