Solveeit Logo

Question

Question: If \(3\sin(A - 15^{o})\cos(A + 15^{o})\) then the general value of \(= \cos(A - 15^{o})\sin(A + 15^{...

If 3sin(A15o)cos(A+15o)3\sin(A - 15^{o})\cos(A + 15^{o}) then the general value of =cos(A15o)sin(A+15o)= \cos(A - 15^{o})\sin(A + 15^{o}) is.

A

\Rightarrow

B

2sin(A15o)cos(A+15o)=122\sin(A - 15^{o})\cos(A + 15^{o}) = \frac{1}{2}

C

\Rightarrow

D

None of these

Answer

2sin(A15o)cos(A+15o)=122\sin(A - 15^{o})\cos(A + 15^{o}) = \frac{1}{2}

Explanation

Solution

\Rightarrow

Dividing by sin(θ+π3)=12=sin(π4)\sin\left( \theta + \frac{\pi}{3} \right) = \frac{1}{\sqrt{2}} = \sin\left( \frac{\pi}{4} \right),

we get \Rightarrow

θ=nπ+(1)nπ4π31cos2θ2cosθ+14=0\theta = n\pi + ( - 1)^{n}\frac{\pi}{4} - \frac{\pi}{3}1 - \cos^{2}\theta - 2\cos\theta + \frac{1}{4} = 0.