Solveeit Logo

Question

Question: if 3rd virial coeff is 0.25 L^2 mol^-2, then find volume occupied by 1 mole of real gas at ntp...

if 3rd virial coeff is 0.25 L^2 mol^-2, then find volume occupied by 1 mole of real gas at ntp

Answer

24.07 L

Explanation

Solution

The virial equation of state for a real gas, for 1 mole of gas (Vm=VV_m = V), can be written as:

PV=RT(1+BV+CV2+)PV = RT \left(1 + \frac{B}{V} + \frac{C}{V^2} + \dots \right)

where BB is the second virial coefficient and CC is the third virial coefficient.

Given: Third virial coefficient, C=0.25L2mol2C = 0.25 \, \text{L}^2 \, \text{mol}^{-2}. The problem provides only the third virial coefficient. In such cases, it is typically assumed that the second virial coefficient (BB) is zero and higher-order terms are negligible for the purpose of solving the problem. So, the equation simplifies to:

PV=RT(1+CV2)PV = RT \left(1 + \frac{C}{V^2}\right)

PV=RT+RTCV2PV = RT + \frac{RTC}{V^2}

We need to find the volume (VV) occupied by 1 mole of real gas at NTP. NTP (Normal Temperature and Pressure) is generally defined as: Temperature (TT) = 20C=20+273.15=293.15K20^\circ \text{C} = 20 + 273.15 = 293.15 \, \text{K} Pressure (PP) = 1atm1 \, \text{atm} Gas constant (RR) = 0.08206L atm mol1K10.08206 \, \text{L atm mol}^{-1} \, \text{K}^{-1}

First, calculate the value of RTRT:

RT=0.08206L atm mol1K1×293.15K=24.06009L atm mol1RT = 0.08206 \, \text{L atm mol}^{-1} \, \text{K}^{-1} \times 293.15 \, \text{K} = 24.06009 \, \text{L atm mol}^{-1}

Now, substitute the values into the simplified virial equation:

1×V=24.06009+24.06009×0.25V21 \times V = 24.06009 + \frac{24.06009 \times 0.25}{V^2}

V=24.06009+6.0150225V2V = 24.06009 + \frac{6.0150225}{V^2}

This can be rearranged into a cubic equation:

V3=24.06009V2+6.0150225V^3 = 24.06009 V^2 + 6.0150225

V324.06009V26.0150225=0V^3 - 24.06009 V^2 - 6.0150225 = 0

To solve this cubic equation, we can use an approximation method, as the correction term for real gases is usually small. As a first approximation, we can assume the gas behaves ideally to estimate VV. For an ideal gas at NTP:

Videal=RTP=24.06009L atm mol11atm=24.06009LV_{ideal} = \frac{RT}{P} = \frac{24.06009 \, \text{L atm mol}^{-1}}{1 \, \text{atm}} = 24.06009 \, \text{L}

Now, substitute VVidealV \approx V_{ideal} into the correction term RTCV2\frac{RTC}{V^2}:

VVideal+RTCPVideal2V \approx V_{ideal} + \frac{RTC}{P V_{ideal}^2}

V24.06009L+24.06009L atm mol1×0.25L2mol21atm×(24.06009L)2V \approx 24.06009 \, \text{L} + \frac{24.06009 \, \text{L atm mol}^{-1} \times 0.25 \, \text{L}^2 \, \text{mol}^{-2}}{1 \, \text{atm} \times (24.06009 \, \text{L})^2}

V24.06009L+6.0150225L3atm mol3578.8836L2atm mol2V \approx 24.06009 \, \text{L} + \frac{6.0150225 \, \text{L}^3 \, \text{atm mol}^{-3}}{578.8836 \, \text{L}^2 \, \text{atm mol}^{-2}}

V24.06009L+0.0103907LV \approx 24.06009 \, \text{L} + 0.0103907 \, \text{L}

V24.07048LV \approx 24.07048 \, \text{L}

Rounding to a reasonable number of significant figures (e.g., two decimal places, consistent with the precision of R and T):

V24.07LV \approx 24.07 \, \text{L}