Solveeit Logo

Question

Question: If \(3cot{\rm{A}} = 4\), check whether \(\dfrac{{1 - {{\tan }^2}{\rm{A}}}}{{1 + {{\tan }^2}{\rm{A}}}...

If 3cotA=43cot{\rm{A}} = 4, check whether 1tan2A1+tan2A=cos2Asin2A\dfrac{{1 - {{\tan }^2}{\rm{A}}}}{{1 + {{\tan }^2}{\rm{A}}}} = {\cos ^2}{\rm{A}} - {\sin ^2}{\rm{A}} or not.

Explanation

Solution

We can use the right-angle triangle Pythagoras theorem and then find the values of 1tan2A1+tan2A\dfrac{{1 - {{\tan }^2}{\rm{A}}}}{{1 + {{\tan }^2}{\rm{A}}}} and cos2Asin2A{\cos ^2}{\rm{A}} - {\sin ^2}{\rm{A}}. Right angle means the angle is 9090^\circ . It consists of six trigonometric ratios such as sin, cosine, tan, cot, sec and cosec.

Complete step by step solution:
The given trigonometric equation is 3cotA=43cot{\rm{A}} = 4.
Let us first rearrange the above trigonometric equation:
cotA=43cot{\rm{A}} = \dfrac{4}{3}
We know the formula tanA=1cotA\tan {\rm{A}} = \dfrac{1}{{\cot {\rm{A}}}} and substitute the value cotA=43cot{\rm{A}} = \dfrac{4}{3} in tanA=1cotA\tan {\rm{A}} = \dfrac{1}{{\cot {\rm{A}}}}.
tanA=143 =34\tan {\rm{A}} = \dfrac{1}{{\dfrac{4}{3}}}\\\ = \dfrac{3}{4}
Hence, the value of tanA\tan {\rm{A}} through the above result is 34\dfrac{3}{4}.
Now we can now draw a right-angled triangle on the basis of tanA=34\tan {\rm{A}} = \dfrac{3}{4}.
Now, apply the right-angled triangle Pythagoras theorem for the above triangle.
(Hypotenuse)2=(Height)2+(Base)2 AC2=AB2+BC2{\left( {{\rm{Hypotenuse}}} \right)^2} = {\left( {{\rm{Height}}} \right)^2} + {\left( {{\rm{Base}}} \right)^2}\\\ {\rm{A}}{{\rm{C}}^2} = {\rm{A}}{{\rm{B}}^2} + {\rm{B}}{{\rm{C}}^{\rm{2}}}
Substitute the values from the above diagram AB=4{\rm{AB}} = 4 and BC=3{\rm{ BC}} = 3 in AC2=AB2+BC2{\rm{A}}{{\rm{C}}^2} = {\rm{A}}{{\rm{B}}^2} + {\rm{B}}{{\rm{C}}^{\rm{2}}}.
AC2=AB2+BC2 =(4)2+(3)2 =16+9 =25{\rm{A}}{{\rm{C}}^2} = {\rm{A}}{{\rm{B}}^2} + {\rm{B}}{{\rm{C}}^{\rm{2}}}\\\ = {\left( 4 \right)^2} + {\left( 3 \right)^2}\\\ = 16 + 9\\\ = 25
Take the square root of the above equation:

AC=25 =5{\rm{AC}} = \sqrt {25} \\\ = 5
Hence, the hypotenuse of the triangle from the above result is 5.
Now we can use the basic formula of sine to calculate the value of sinA\sin {\rm{A}}.
sinA=BaseHypotenuse =BCAC =35\sin {\rm{A}} = \dfrac{{{\rm{Base}}}}{{{\rm{Hypotenuse}}}}\\\ = \dfrac{{{\rm{BC}}}}{{{\rm{AC}}}}\\\ = \dfrac{3}{5}
Hence, the value of sinA\sin {\rm{A}} from the above result is 35\dfrac{3}{5}.
Now, we can use the basic formula of sine to calculate the value of cosA\cos {\rm{A}}.
cosA=HeightHypotenuse =ABAC =45\cos {\rm{A}} = \dfrac{{{\rm{Height}}}}{{{\rm{Hypotenuse}}}}\\\ = \dfrac{{{\rm{AB}}}}{{{\rm{AC}}}}\\\ = \dfrac{4}{5}
Hence, the value of cosA\cos {\rm{A}} from the above result is 45\dfrac{4}{5}.
Now, we have to check whether,
1tan2A1+tan2A=cos2Asin2A\dfrac{{1 - {{\tan }^2}{\rm{A}}}}{{1 + {{\tan }^2}{\rm{A}}}} = {\cos ^2}{\rm{A}} - {\sin ^2}{\rm{A}}
Take the left-hand side of the above equation and substitute the value tanA=34\tan {\rm{A}} = \dfrac{3}{4} in 1tan2A1+tan2A\dfrac{{1 - {{\tan }^2}{\rm{A}}}}{{1 + {{\tan }^2}{\rm{A}}}}.
1tan2A1+tan2A=1(34)21+(34)2 =19161+916 =7162516 =725\dfrac{{1 - {{\tan }^2}{\rm{A}}}}{{1 + {{\tan }^2}{\rm{A}}}} = \dfrac{{1 - {{\left( {\dfrac{3}{4}} \right)}^2}}}{{1 + {{\left( {\dfrac{3}{4}} \right)}^2}}}\\\ = \dfrac{{1 - \dfrac{9}{{16}}}}{{1 + \dfrac{9}{{16}}}}\\\ = \dfrac{{\dfrac{7}{{16}}}}{{\dfrac{{25}}{{16}}}}\\\ = \dfrac{7}{{25}}
Now, take the right-hand side of the equation cos2Asin2A{\cos ^2}{\rm{A}} - {\sin ^2}{\rm{A}} and substitute the values cosA=45andsinA=35\cos {\rm{A}} = \dfrac{4}{5}{\rm{ and }}\sin {\rm{A}} = \dfrac{3}{5} in cos2Asin2A{\cos ^2}{\rm{A}} - {\sin ^2}{\rm{A}}.
cos2Asin2A=(45)2(35)2 =1625925 =725{\cos ^2}{\rm{A}} - {\sin ^2}{\rm{A}} = {\left( {\dfrac{4}{5}} \right)^2} - {\left( {\dfrac{3}{5}} \right)^2}\\\ = \dfrac{{16}}{{25}} - \dfrac{9}{{25}}\\\ = \dfrac{7}{{25}}
Hence, the left hand side is the same as right hand side.

Note: Here we use the Pythagoras theorem. The trigonometric values cosec, sec and cot are the opposite values of sine, cos and tan respectively. We solve the question with the left-hand side and right-hand side process.