Solveeit Logo

Question

Question: If $3(a^2+b^2+c^2+1)=2(a+b+c+ab+bc+ca)$ then $\begin{vmatrix} a & b & c \\ bc & ca & ab \\ 1 & 2 & ...

If 3(a2+b2+c2+1)=2(a+b+c+ab+bc+ca)3(a^2+b^2+c^2+1)=2(a+b+c+ab+bc+ca) then

abcbccaab122\begin{vmatrix} a & b & c \\ bc & ca & ab \\ 1 & 2 & 2 \end{vmatrix} is equal to

A

a+b+c

B

a+b-2c

C

abc

D

4a2b2c24a^2b^2c^2

Answer

a+b-2c

Explanation

Solution

We are given

3(a2+b2+c2+1)=2(a+b+c+ab+bc+ca)3(a^2+b^2+c^2+1)=2(a+b+c+ab+bc+ca)

and must evaluate

D=abcbccaab122.D=\begin{vmatrix} a & b & c \\ bc & ca & ab \\ 1 & 2 & 2 \end{vmatrix}.

A quick “test‐point” helps. Notice that the given equation is symmetric. It is natural to try the symmetric solution a=b=ca=b=c. Let

a=b=c=t.a=b=c=t.

Then

3(3t2+1)=2(3t+3t2)9t2+3=6t+6t29t26t26t+3=03t26t+3=0t22t+1=0(t1)2=0,\begin{aligned} 3(3t^2+1) &= 2(3t+3t^2)\\ 9t^2+3 &= 6t+6t^2\\ 9t^2-6t^2-6t+3 &=0\\ 3t^2-6t+3 &=0\\ t^2-2t+1 &=0\\ (t-1)^2 &=0, \end{aligned}

so t=1t=1. Thus one solution is a=b=c=1a=b=c=1.

Now substitute a=b=c=1a=b=c=1 into the determinant:

111111111122=111111122.\begin{vmatrix} 1 & 1 & 1 \\ 1\cdot1 & 1\cdot1 & 1\cdot1 \\ 1 & 2 & 2 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 2 & 2 \end{vmatrix}.

Because the first two rows are identical, the determinant is zero.

Next, check the given options for a=b=c=1a=b=c=1:

  1. a+b+c=1+1+1=3a+b+c=1+1+1=3,
  2. a+b2c=1+121=0a+b-2c=1+1-2\cdot1=0,
  3. abc=1abc=1,
  4. 4a2b2c2=44a^2b^2c^2=4.

Only option (2) yields 0. (A more detailed algebraic manipulation would show that under the given relation the determinant is forced to equal a+b2ca+b-2c.)