Solveeit Logo

Question

Question: If 3A = \(\begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & –2 \\ x & 2 & y \end{bmatrix}\)and A is orthogonal, t...

If 3A = [122212x2y]\begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & –2 \\ x & 2 & y \end{bmatrix}and A is orthogonal, then x + y =

A

3

B

– 2

C

–3

D

None

Answer

–3

Explanation

Solution

A = 13\frac { 1 } { 3 } [122212x2y]\begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & –2 \\ x & 2 & y \end{bmatrix}Ž A = 13\frac{1}{3}B (Let)

and AA' = I

Ž(13.B)\left( \frac{1}{3}.B \right). (13.B)\left( \frac{1}{3}.B \right)^{'} = I

= B.B' = 9 I

Ž [122212x2y]\begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & –2 \\ x & 2 & y \end{bmatrix}. [12x21222y]\begin{bmatrix} 1 & 2 & x \\ 2 & 1 & 2 \\ 2 & –2 & y \end{bmatrix} = [900090009]\begin{bmatrix} 9 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 9 \end{bmatrix}

Ž x + 4 + 2y = 0, 2x + 2 – 2y = 0

Ž x = – 2, y = – 1

\ x + y = (–2) + (–1)

= –3