Solveeit Logo

Question

Mathematics Question on Matrices

If 3A+4B=3A + 4B' = [71017 0631]\begin{bmatrix}7&-10&17\\\ 0&6&31\end{bmatrix} and 2B3A2B - 3A' [118 40 57] \begin{bmatrix}-1&18\\\ 4&0\\\ -5&-7\end{bmatrix} then B=B =

A

[118 416 57]\begin{bmatrix}-1&-18\\\ 4&-16\\\ -5&-7\end{bmatrix}

B

[13 11 24]\begin{bmatrix}1&3\\\ -1&1\\\ 2&4\end{bmatrix}

C

[13 11 24]\begin{bmatrix}1&3\\\ -1&1\\\ 2&-4\end{bmatrix}

D

[13 11 24]\begin{bmatrix}1&-3\\\ -1&1\\\ 2&4\end{bmatrix}

Answer

[13 11 24]\begin{bmatrix}1&3\\\ -1&1\\\ 2&4\end{bmatrix}

Explanation

Solution

3A+4B=[71017 0631](1)3A+4B' =\left[\begin{matrix}7&-10&17\\\ 0&6&31\end{matrix}\right] \quad \dots\left(1\right)
(2B3A)=(2B)(3A)=2B3A\left(2B-3A'\right)'=\left(2B\right)'-\left(3A'\right)'=2B'-3A
2B3A=[145 1807](2)\Rightarrow\, 2B' -3A=\left[\begin{matrix}-1&4&-5\\\ 18&0&-7\end{matrix}\right]\quad\dots\left(2\right)
Adding 1 and 2, we get 6B=[6612 18624]6B'=\left[\begin{matrix}6&-6&12\\\ 18&6&24\end{matrix}\right]
B=[112 314]B=[13 11 24]\Rightarrow\, B' =\left[\begin{matrix}1&-1&2\\\ 3&1&4\end{matrix}\right] \, \therefore\, B=\left[\begin{matrix}1&3\\\ -1&1\\\ 2&4\end{matrix}\right]