Solveeit Logo

Question

Question: If \(340{\text{ g}}\) of a mixture of \({{\text{N}}_{\text{2}}}\) and \({{\text{H}}_{\text{2}}}\) in...

If 340 g340{\text{ g}} of a mixture of N2{{\text{N}}_{\text{2}}} and H2{{\text{H}}_{\text{2}}} in the incorrect ratio gave 20%20\% yield of NH3{\text{N}}{{\text{H}}_{\text{3}}}, the mass produced will be:
A. 16 g16{\text{ g}}
B. 17 g17{\text{ g}}
C. 20 g20{\text{ g}}
D. 68 g68{\text{ g}}

Explanation

Solution

Follow the given steps to calculate the mass of NH3{\text{N}}{{\text{H}}_{\text{3}}} produced when the yield of reaction is 20%20\% and the mass of mixture of N2{{\text{N}}_{\text{2}}} and H2{{\text{H}}_{\text{2}}} is 340 g340{\text{ g}}:
Write the balanced chemical equation.
Determine the molar masses of N2{{\text{N}}_{\text{2}}}, H2{{\text{H}}_{\text{2}}} and NH3{\text{N}}{{\text{H}}_{\text{3}}}.
Determine the masses of N2{{\text{N}}_{\text{2}}}, H2{{\text{H}}_{\text{2}}} and NH3{\text{N}}{{\text{H}}_{\text{3}}} for 100%100\% yield.
Determine the mass of NH3{\text{N}}{{\text{H}}_{\text{3}}} produced when the yield of reaction is 20%20\% .
Determine the mass of NH3{\text{N}}{{\text{H}}_{\text{3}}} produced when the yield of reaction is 20%20\% and the mass of mixture of N2{{\text{N}}_{\text{2}}} and H2{{\text{H}}_{\text{2}}} is 340 g340{\text{ g}}.

Complete step by step answer:
Write the balanced chemical equation as follows:
In the reaction, N2{{\text{N}}_{\text{2}}} and H2{{\text{H}}_{\text{2}}} react to produce NH3{\text{N}}{{\text{H}}_{\text{3}}}. Thus, the chemical equation is,
N2+H2NH3{{\text{N}}_{\text{2}}} + {{\text{H}}_{\text{2}}} \to {\text{N}}{{\text{H}}_{\text{3}}}
Count the number of each atom on the reactant and product side. Thus,

N2+H2NH3  N2 N1  H2 H3  {{\text{N}}_{\text{2}}} + {{\text{H}}_{\text{2}}} \to {\text{N}}{{\text{H}}_{\text{3}}} \\\ {\text{ N}} - 2{\text{ N}} - 1 \\\ {\text{ H}} - 2{\text{ H}} - 3 \\\

Change the coefficient of NH3{\text{N}}{{\text{H}}_{\text{3}}} to 22 to balance the N{\text{N}} atoms. Thus,

N2+H22NH3  N2 N2  H2 H6  {{\text{N}}_{\text{2}}} + {{\text{H}}_{\text{2}}} \to 2{\text{N}}{{\text{H}}_{\text{3}}} \\\ {\text{ N}} - 2{\text{ N}} - 2 \\\ {\text{ H}} - 2{\text{ H}} - 6 \\\

Change the coefficient of H2{{\text{H}}_{\text{2}}} to 33 to balance the H{\text{H}} atoms. Thus,

N2+3H22NH3  N2 N2  H6 H6  {{\text{N}}_{\text{2}}} + 3{{\text{H}}_{\text{2}}} \to 2{\text{N}}{{\text{H}}_{\text{3}}} \\\ {\text{ N}} - 2{\text{ N}} - 2 \\\ {\text{ H}} - 6{\text{ H}} - 6 \\\

The number of all the atoms on the reactant and product side are equal. Thus, the balanced chemical equation is,
N2+3H22NH3{{\text{N}}_{\text{2}}} + 3{{\text{H}}_{\text{2}}} \to 2{\text{N}}{{\text{H}}_{\text{3}}}
Step 2: Determine the molar masses of N2{{\text{N}}_{\text{2}}}, H2{{\text{H}}_{\text{2}}} and NH3{\text{N}}{{\text{H}}_{\text{3}}} as follows:
Calculate the molar mass of N2{{\text{N}}_{\text{2}}} as follows:
Molar mass of N2=2×Mass of N =2×14 Molar mass of N2=28 g mol1  {\text{Molar mass of }}{{\text{N}}_{\text{2}}} = 2 \times {\text{Mass of N}} \\\ = 2 \times 14 \\\ {\text{Molar mass of }}{{\text{N}}_{\text{2}}} = 28{\text{ g mo}}{{\text{l}}^{ - 1}} \\\
Thus, the molar mass of N2{{\text{N}}_{\text{2}}} is 28 g mol128{\text{ g mo}}{{\text{l}}^{ - 1}}.
Calculate the molar mass of H2{{\text{H}}_{\text{2}}} as follows:
Molar mass of H2=2×Mass of H =2×1 Molar mass of H2=2 g mol1  {\text{Molar mass of }}{{\text{H}}_{\text{2}}} = 2 \times {\text{Mass of H}} \\\ = 2 \times 1 \\\ {\text{Molar mass of }}{{\text{H}}_{\text{2}}} = 2{\text{ g mo}}{{\text{l}}^{ - 1}} \\\
Thus, the molar mass of H2{{\text{H}}_{\text{2}}} is 2 g mol12{\text{ g mo}}{{\text{l}}^{ - 1}}.
Calculate the molar mass of NH3{\text{N}}{{\text{H}}_{\text{3}}} as follows:
Molar mass of NH3=(1×Mass of N)+(3×Mass of H) =(1×14)+(3×1) =14+3 Molar mass of NH3=17 g mol1  {\text{Molar mass of N}}{{\text{H}}_{\text{3}}} = \left( {1 \times {\text{Mass of N}}} \right) + \left( {3 \times {\text{Mass of H}}} \right) \\\ = \left( {1 \times 14} \right) + \left( {3 \times 1} \right) \\\ = 14 + 3 \\\ {\text{Molar mass of N}}{{\text{H}}_{\text{3}}} = 17{\text{ g mo}}{{\text{l}}^{ - 1}} \\\
Thus, the molar mass of NH3{\text{N}}{{\text{H}}_{\text{3}}} is 17 g mol117{\text{ g mo}}{{\text{l}}^{ - 1}}.
Step 3: Determine the masses of N2{{\text{N}}_{\text{2}}}, H2{{\text{H}}_{\text{2}}} and NH3{\text{N}}{{\text{H}}_{\text{3}}} as follows:
From, the reaction stoichiometry, 1 mol N21{\text{ mol }}{{\text{N}}_2} reacts with 3 mol H2{\text{3 mol }}{{\text{H}}_{\text{2}}} to produce 2 mol NH3{\text{2 mol N}}{{\text{H}}_{\text{3}}}.
Thus,
1 mol N2=1×28=28 g1{\text{ mol }}{{\text{N}}_2} = 1 \times 28 = 28{\text{ g}}
3 mol H2=3×2=6 g{\text{3 mol }}{{\text{H}}_{\text{2}}} = 3 \times 2 = 6{\text{ g}}
2 mol NH3=2×17=34 g{\text{2 mol N}}{{\text{H}}_{\text{3}}} = 2 \times 17 = 34{\text{ g}}
Thus, 28 g28{\text{ g}} of N2{{\text{N}}_{\text{2}}} reacts with 6 g6{\text{ g}} of H2{{\text{H}}_{\text{2}}} to produce 34 g34{\text{ g}} of NH3{\text{N}}{{\text{H}}_{\text{3}}}.
Mass of N2{{\text{N}}_{\text{2}}} and H2{{\text{H}}_{\text{2}}} mixture =28+6=34 g = 28 + 6 = 34{\text{ g}}.
Thus, 34 g34{\text{ g}} of mixture of N2{{\text{N}}_{\text{2}}} and H2{{\text{H}}_{\text{2}}} reacts to produce 34 g34{\text{ g}} of NH3{\text{N}}{{\text{H}}_{\text{3}}}. This id 100%100\% yield.
Step 4: Determine the mass of NH3{\text{N}}{{\text{H}}_{\text{3}}} produced when the yield of reaction is 20%20\% as follows:
100%100\% yield produces 34 g34{\text{ g}} of NH3{\text{N}}{{\text{H}}_{\text{3}}}. Thus, the mass of NH3{\text{N}}{{\text{H}}_{\text{3}}} produced when the yield of reaction is 20%20\% is,
Mass of NH3=34 g×20100 Mass of NH3=6.8 g  {\text{Mass of N}}{{\text{H}}_3} = 34{\text{ g}} \times \dfrac{{20}}{{100}} \\\ {\text{Mass of N}}{{\text{H}}_3} = 6.8{\text{ g}} \\\
Thus, the mass of NH3{\text{N}}{{\text{H}}_{\text{3}}} produced when the yield of reaction is 20%20\% is 6.8 g6.8{\text{ g}}.
Step 5: Determine the mass of NH3{\text{N}}{{\text{H}}_{\text{3}}} produced when the yield of reaction is 20%20\% and the mass of mixture of N2{{\text{N}}_{\text{2}}} and H2{{\text{H}}_{\text{2}}} is 340 g340{\text{ g}} as follows:
When the reaction yield is 20%20\% , 34 g34{\text{ g}} of mixture of N2{{\text{N}}_{\text{2}}} and H2{{\text{H}}_{\text{2}}} produces 6.8 g6.8{\text{ g}} of NH3{\text{N}}{{\text{H}}_{\text{3}}}. Thus, when the reaction yield is 20%20\% , 340 g340{\text{ g}} of mixture of N2{{\text{N}}_{\text{2}}} and H2{{\text{H}}_{\text{2}}} produces,
Mass of NH3=6.8 g NH3×340 ̸g mixture of N2 and H234 ̸g mixture of N2 and H2 Mass of NH3=68 g  {\text{Mass of N}}{{\text{H}}_3} = 6.8{\text{ g N}}{{\text{H}}_3} \times \dfrac{{340{\text{ }}\not{{{\text{g mixture of }}{{\text{N}}_2}{\text{ and }}{{\text{H}}_2}}}}}{{34{\text{ }}\not{{{\text{g mixture of }}{{\text{N}}_2}{\text{ and }}{{\text{H}}_2}}}}} \\\ {\text{Mass of N}}{{\text{H}}_3} = 68{\text{ g}} \\\
Thus, the mass of NH3{\text{N}}{{\text{H}}_{\text{3}}} produced when the yield of reaction is 20%20\% and the mass of mixture of N2{{\text{N}}_{\text{2}}} and H2{{\text{H}}_{\text{2}}} is 340 g340{\text{ g}} is 68 g68{\text{ g}}.

So, the correct answer is Option D.

Note:
Write the correct balanced chemical equation for the given reaction. Unbalanced chemical equations can lead to incurred masses of the reactants and products.