Solveeit Logo

Question

Mathematics Question on permutations and combinations

If 32P6=k(32C6),^{32}{{P}_{6}}=k\,{{(}^{32}}{{C}_{6}}), then kk is equal to

A

66

B

2424

C

120120

D

720720

Answer

720720

Explanation

Solution

Given, 32Pe=k(32C6)^{32}{{P}_{e}}=k\,{{(}^{32}}{{C}_{6}})
\Rightarrow 32!(326)!=k.32!6!(326)!\frac{32!}{(32-6)!}=k.\frac{32!}{6!(32-6)!} [nPr=n!(nr)!andnCr=n!r!(nr)!]\left[ \because \,{{\,}^{n}}{{P}_{r}}=\frac{n!}{(n-r)!}\,\,and{{\,}^{n}}{{C}_{r}}=\frac{n!}{r!(n-r)!} \right]
\Rightarrow 1=k6!k=6!1=\frac{k}{6!}\Rightarrow k=6!
\Rightarrow k=6×5×4×3×2×1=720k=6\times 5\times 4\times 3\times 2\times 1=720