Solveeit Logo

Question

Question: If \(300^{o}\), then the difference in the amplitudes of \(arg(z) = \theta\) and \(arg(\overline{z})...

If 300o300^{o}, then the difference in the amplitudes of arg(z)=θarg(z) = \theta and arg(z)=arg(\overline{z}) = is.

A

θ\theta

B

θ- \theta

C

πθ\pi - \theta

D

0

Answer

πθ\pi - \theta

Explanation

Solution

Squaring the given relations implies that

θ=π10\theta = \frac{\pi}{10}

Now z=1i3z = - 1 - i\sqrt{3}

α=tan1ba=tan131=π3θ=(πα)=(ππ/3)=2π3\alpha = \tan^{- 1}\left| \frac{b}{a} \right| = \tan^{- 1}\left| - \frac{\sqrt{3}}{1} \right| = \frac{\pi}{3}\theta = - (\pi - \alpha) = - (\pi - \pi/3) = \frac{- 2\pi}{3}.