Question
Question: If \(3\tan \theta \tan \phi =1\), then A. \(\cos \left( \theta +\phi \right)=\cos \left( \theta -...
If 3tanθtanϕ=1, then
A. cos(θ+ϕ)=cos(θ−ϕ)
B. cos(θ+ϕ)=2cos(θ−ϕ)
C. cos(θ+ϕ)=−cos(θ−ϕ)
D. 2cos(θ+ϕ)=cos(θ−ϕ)
Explanation
Solution
Hint : We first use the trigonometric ratio relation of tanx=cosxsinx. We add cosθcosϕ both sides of the equation. We use the associative angle formulas of cosθcosϕ−sinθsinϕ=cos(θ+ϕ), sinθsinϕ+cosθcosϕ=cos(θ−ϕ) to find the relation between the cos ratios.
Complete step-by-step answer :
We break the given equation 3tanθtanϕ=1 where tanx=cosxsinx.
So, 3tanθtanϕ=3cosθcosϕsinθsinϕ=1.
The cross multiplication gives 3sinθsinϕ=cosθcosϕ.
Now we add cosθcosϕ both sides of the equation and get