Solveeit Logo

Question

Mathematics Question on Inverse Trigonometric Functions

If 3sin1(2x1+x2)4cos1(1x21+x2)+2tan1(2x1x2)=π33\,\sin^{-1}\left(\frac{2x}{1+x^2}\right)-4\,\cos^{-1}\left(\frac{1-x^2}{1+x^2}\right)+2\,tan^{-1}\left(\frac{2x}{1-x^2}\right)=\frac{\pi}{3}, then xx is equal to

A

13\frac{1}{\sqrt3}

B

13-\frac{1}{\sqrt3}

C

3\sqrt3

D

34-\frac{\sqrt3}{4}

Answer

13\frac{1}{\sqrt3}

Explanation

Solution

Put x=tanθx=tan\,\theta 3sin12tanθ1+tan2θ4cos11tan2θ1+tan2θ\therefore 3\,sin^{-1}\frac{2\,tan\,\theta}{1+tan^{2}\theta} - 4\cdot cos^{-1} \frac{1-tan^{2} \theta}{1+tan^{2}\theta} +2tan12tanθ1tan2θ=π3+2\,tan^{-1} \frac{2\,tan\,\theta}{1-tan^{2} \theta} = \frac{\pi}{3} 3sin1(sin2θ)4cos1(cos2θ)+2sin1(tan2θ)=π3\Rightarrow 3\,sin^{-1} \left(sin\,2\,\theta\right) -4\,cos^{-1}\left(cos\,2\,\theta\right)+2\,sin^{-1} \left(tan\, 2\,\theta\right) = \frac{\pi}{3} 3(2θ)4(2θ)+2(2θ)=π3\Rightarrow 3\left(2\,\theta\right)-4\left(2\,\theta\right)+2\left(2\,\theta\right) = \frac{\pi}{3} 2θ=π3\Rightarrow 2\,\theta= \frac{\pi}{3} θ=π6\Rightarrow \theta = \frac{\pi}{6} x=tanπ6\Rightarrow x=tan \frac{\pi}{6} =13= \frac{1}{\sqrt{3}}