Solveeit Logo

Question

Mathematics Question on Complex Numbers and Quadratic Equations

If (3+i)(z+zˉ)(2+i)(zzˉ)+14i=0,(3+i)\,(z+\bar{z})-(2+i)(z-\bar{z})+14i\,=0, then zzˉz\bar{z} is equal to

A

55

B

88

C

1010

D

4040

Answer

1010

Explanation

Solution

Let z=x+iy,z=x+iy, then zˉ=xiy\bar{z}=x-iy
\therefore z+zˉ=2xz+\bar{z}=2x and zzˉ=2iyz-\bar{z}=2iy
Given, (3+i)(z+zˉ)(2+i)(zzˉ)+14i=0(3+i)(z+\bar{z})-(2+i)(z-\bar{z})+14i=0
\Rightarrow (3+i)2x(2+i)2iy+14i=0(3+i)2x-(2+i)2iy+14i=0
\Rightarrow 6x+2ix4yi+2y+14i=0+0i6x+2ix-4yi+2y+14i=0+0i
On comparing real and imaginary part, we get
6x+2y=06x+2y=0 and 2x4y+14=02x-4y+14=0
On solving, we get
x=1,y=3x=-1,\,y=3
\therefore zzˉ=z2=((1)2+(3)2)2=10z\bar{z}=|z{{|}^{2}}={{(\sqrt{{{(-1)}^{2}}+{{(3)}^{2}}})}^{2}}=10