Solveeit Logo

Question

Chemistry Question on Solutions

If 3 g of glucose (Molar mass = 180) is dissolved in 60 g of water at 15 degree, the osmotic pressure of the solution will be

A

6.57 atm

B

0.34 atm

C

5.57 atm

D

0.65 atm

Answer

6.57 atm

Explanation

Solution

To calculate the osmotic pressure of a solution, we can use the formula:
Osmotic pressure=(nV)RT\text{Osmotic pressure} = \left( \frac{n}{V} \right)RT
First, let's calculate the number of moles of glucose:
Number of moles of glucose=mass of glucosemolar mass of glucose\text{Number of moles of glucose} = \frac{\text{mass of glucose}}{\text{molar mass of glucose}}

Number of moles of glucose=3g180g/mol=0.0167mol\text{Number of moles of glucose} = \frac{3 \, \text{g}}{180 \, \text{g/mol}} = 0.0167 \, \text{mol}

Next, we need to convert the mass of water to volume:
Volume of water=mass of waterdensity of water\text{Volume of water} = \frac{\text{mass of water}}{\text{density of water}}

Volume of water=60g1g/cm3=60cm3=0.06L\text{Volume of water} = \frac{60 \, \text{g}}{1 \, \text{g/cm}^3} = 60 \, \text{cm}^3 = 0.06 \, \text{L}

Now, we can calculate the osmotic pressure:
Osmotic pressure=(0.0167mol0.06L)×(0.0821L.atm/(mol.K))×(15+273)K\text{Osmotic pressure} = \left( \frac{0.0167 \, \text{mol}}{0.06 \, \text{L}} \right) \times (0.0821 \, \text{L.atm/(mol.K)}) \times (15 + 273) \, \text{K}

Osmotic pressure6.57atm\text{Osmotic pressure} \approx 6.57 \, \text{atm}
Therefore, the osmotic pressure of the solution will be approximately (A) 6.57 atm.