Solveeit Logo

Question

Mathematics Question on Trigonometric Ratios

If 3 cot A = 4, check whether (1tan2A)(1+tan2A)\frac{(1-\text{tan}^2 A)}{(1+\text{tan}^2 A)} = cos2 A – sin2 A or not

Answer

It is given that 3cot A = 4
Or, cot A =43\frac{4}{3}
Consider a right triangle ABC, right-angled at point B.
If 3 cot A=4,check whether1-tan2A/1+tan2A

cot(A) = ABBC=43\frac{AB}{BC} =\frac{ 4}{3}

If AB is 4k, then BC will be 3k, where k is a positive integer.
In ΔΔABC,
(AC)2 = (AB)2 + (BC)2
= (4k)2 + (3k)2
= 16k2 + 9k2
= 25k2
AC = 5k

tan(A) = BCAB=34\frac{BC}{AB} =\frac{ 3}{4}

sin (A) = BCAC=35\frac{BC}{AC} = \frac{3}{5}

cos (A) = ABAC=45\frac{AB}{AC} =\frac{ 4}{5}

1tan2A1+tan2A=1(34)21+(34)2\frac{1-tan^2A}{1+tan^2A}=\frac{1-(\frac{3}{4})^2}{1+(\frac{3}{4})^2}

=19161+916=\frac{1-\frac{9}{16}}{1+\frac{9}{16}}

=725=\frac{7}{25}

cos2 A - sin2 A =(45)2(35)2=(\frac{4}{5})^2-(\frac{3}{5})^2

=1625925=\frac{16}{25}-\frac{9}{25}

=725=\frac{7}{25}

(1tan2A)(1+tan2A)=cos2A sin 2A∴ \frac{(1-\text{tan}^2 A)}{(1+\text{tan}^2 A)} = \text{cos}^2 A –\text{ sin }^2 A