Question
Mathematics Question on Trigonometric Ratios
If 3 cot A = 4, check whether (1+tan2A)(1−tan2A) = cos2 A – sin2 A or not
Answer
It is given that 3cot A = 4
Or, cot A =34
Consider a right triangle ABC, right-angled at point B.
cot(A) = BCAB=34
If AB is 4k, then BC will be 3k, where k is a positive integer.
In ΔABC,
(AC)2 = (AB)2 + (BC)2
= (4k)2 + (3k)2
= 16k2 + 9k2
= 25k2
⇒ AC = 5k
tan(A) = ABBC=43
sin (A) = ACBC=53
cos (A) = ACAB=54
1+tan2A1−tan2A=1+(43)21−(43)2
=1+1691−169
=257
cos2 A - sin2 A =(54)2−(53)2
=2516−259
=257
∴(1+tan2A)(1−tan2A)=cos2A– sin 2A