Solveeit Logo

Question

Question: If \(3\cot A=4\), check whether \[\dfrac{1-{{\tan }^{2}}A}{1+{{\tan }^{2}}A}={{\cos }^{2}}A-{{\sin }...

If 3cotA=43\cot A=4, check whether 1tan2A1+tan2A=cos2Asin2A\dfrac{1-{{\tan }^{2}}A}{1+{{\tan }^{2}}A}={{\cos }^{2}}A-{{\sin }^{2}}A or not.

Explanation

Solution

Hint : It is given that the value of cotA=43\cot A=\dfrac{4}{3} and we know that tanA\tan A is the reciprocal of cotA\cot A then we can write tanA=34\tan A=\dfrac{3}{4}. Substitute this value of tanA\tan A in 1tan2A1+tan2A\dfrac{1-{{\tan }^{2}}A}{1+{{\tan }^{2}}A} then evaluate it. From tanA\tan A, find the values of sinA&cosA\sin A\And \cos A and then substitute the value of sinA\sin A and cosA\cos A in cos2Asin2A{{\cos }^{2}}A-{{\sin }^{2}}A. And then compare the L.H.S and R.H.S of the given equation.

Complete step by step solution :
We are asked to check whether,
1tan2A1+tan2A=cos2Asin2A\dfrac{1-{{\tan }^{2}}A}{1+{{\tan }^{2}}A}={{\cos }^{2}}A-{{\sin }^{2}}A is true or not.
It is given that:
3cotA=4 cotA=43 \begin{aligned} & 3\cot A=4 \\\ & \Rightarrow \cot A=\dfrac{4}{3} \\\ \end{aligned}
From the trigonometry, we know that tanA=1cotA\tan A=\dfrac{1}{\cot A} so tanA=34\tan A=\dfrac{3}{4}.
Now, we are going to substitute the above calculated value of tanA\tan A in 1tan2A1+tan2A\dfrac{1-{{\tan }^{2}}A}{1+{{\tan }^{2}}A}.
1(34)21+(34)2 =19161+916 \begin{aligned} & \dfrac{1-{{\left( \dfrac{3}{4} \right)}^{2}}}{1+{{\left( \dfrac{3}{4} \right)}^{2}}} \\\ & =\dfrac{1-\dfrac{9}{16}}{1+\dfrac{9}{16}} \\\ \end{aligned}
16916+9 =725 \begin{aligned} & \dfrac{16-9}{16+9} \\\ & =\dfrac{7}{25} \\\ \end{aligned}
From the above calculated value of tanA\tan A we can determine the value of sinA and cosA\sin A\text{ and }\cos A.
tanA=34\tan A=\dfrac{3}{4}
To find the value of sinA and cosA\sin A\text{ and }\cos A we are drawing a right angled triangle in the below figure.

So from Pythagoras theorem we can find the values of sinA and cosA\sin A\text{ and }\cos A.
And we know that tanA=PB\tan A=\dfrac{P}{B}, here “P” stands for perpendicular corresponding to angle A and “B” stands for the base corresponding to angle A.
tanA=34\tan A=\dfrac{3}{4}
In the above equation, the value of P = 3 and the value of B = 4 so using Pythagoras theorem we can find the hypotenuse using the formula,
H2=P2+B2 H2=32+42 H2=9+16=25 H=5 \begin{aligned} & {{H}^{2}}={{P}^{2}}+{{B}^{2}} \\\ & \Rightarrow {{H}^{2}}={{3}^{2}}+{{4}^{2}} \\\ & \Rightarrow {{H}^{2}}=9+16=25 \\\ & \Rightarrow H=5 \\\ \end{aligned}
From the trigonometric ratios we know that,
sinA=PH\sin A=\dfrac{P}{H}
Plugging the values of “P” and “H” in the above equation we get,
sinA=35\sin A=\dfrac{3}{5}
cosA=BH\cos A=\dfrac{B}{H}
Plugging the values of “B” and “H” in the above equation we get,
cosA=45\cos A=\dfrac{4}{5}
Substituting the values of sinA and cosA\sin A\text{ and }\cos A that we have just derived in cos2Asin2A{{\cos }^{2}}A-{{\sin }^{2}}A we get,
1625925 =725 \begin{aligned} & \dfrac{16}{25}-\dfrac{9}{25} \\\ & =\dfrac{7}{25} \\\ \end{aligned}
From the above calculation we got the value of cos2Asin2A{{\cos }^{2}}A-{{\sin }^{2}}A is equal to 725\dfrac{7}{25}.
And we have also calculated above the value of 1tan2A1+tan2A\dfrac{1-{{\tan }^{2}}A}{1+{{\tan }^{2}}A} is equal to 725\dfrac{7}{25}.
So, we can say that the equation given in question i.e. 1tan2A1+tan2A=cos2Asin2A\dfrac{1-{{\tan }^{2}}A}{1+{{\tan }^{2}}A}={{\cos }^{2}}A-{{\sin }^{2}}A is true because both L.H.S and R.H.S of this equation has the same value of 725\dfrac{7}{25}.

Note : The other way of stating the true and false of the statement given in the question is by having a sound understanding of the trigonometric identities.
1tan2A1+tan2A=cos2Asin2A\dfrac{1-{{\tan }^{2}}A}{1+{{\tan }^{2}}A}={{\cos }^{2}}A-{{\sin }^{2}}A
In the above equation, if you look carefully at the L.H.S of the equation you will find that it is equal to cos2A\cos 2A.
1tan2A1+tan2A=cos2A\dfrac{1-{{\tan }^{2}}A}{1+{{\tan }^{2}}A}=\cos 2A
And the R.H.S of the given equation is also cos2A\cos 2A because:
cos2Asin2A=cos2A{{\cos }^{2}}A-{{\sin }^{2}}A=\cos 2A
As L.H.S = R.H.S so we can say that the statement 1tan2A1+tan2A=cos2Asin2A\dfrac{1-{{\tan }^{2}}A}{1+{{\tan }^{2}}A}={{\cos }^{2}}A-{{\sin }^{2}}A is true.
So, there is no need to use this equation 3cotA=43\cot A=4.