Solveeit Logo

Question

Mathematics Question on Straight lines

If (3,3)(3,\,\,3) is a vertex of a triangle and (3,6)(-3,\,\,6) and (9,6)(9,\,\,6) are the mid points of the two sides through this vertex, then the centroid of the triangle is

A

(3,7)(3,\,\,7)

B

(1,7)(1,\,\,7)

C

(3,7)(-3,\,\,7)

D

(1,7)(-1,\,\,7)

Answer

(3,7)(3,\,\,7)

Explanation

Solution

Given, A=(3,3),E=(3,6)A=(3,3),E=(-3,6) and F=(9,6)F=(9,6) Let B=(x1,y1)B=({{x}_{1}},{{y}_{1}}) and C=(x2,y2)C=({{x}_{2}},{{y}_{2}})
Then, x1+32=3,y1+32=6\frac{{{x}_{1}}+3}{2}=-3,\,\,\,\,\,\,\,\,\,\,\,\,\frac{{{y}_{1}}+3}{2}=6
\Rightarrow x1=9,y1=9{{x}_{1}}=-9,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{{y}_{1}}=9
and x2+32=9,y2+32=6\frac{{{x}_{2}}+3}{2}=9,\,\,\,\,\,\,\,\,\,\,\,\,\,\frac{{{y}_{2}}+3}{2}=6
\Rightarrow x2=15,y2=9{{x}_{2}}=15,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{{y}_{2}}=9
Now, centroid =(9+15+33,9+9+33)=\left( \frac{-9+15+3}{3},\frac{9+9+3}{3} \right)
=(3,7)=(3,7)