Solveeit Logo

Question

Question: If \(2y = \sqrt {x + 1} + \sqrt {x - 1} \), show that \(4\left( {{x^2} - 1} \right)\dfrac{{{d^2}y}}{...

If 2y=x+1+x12y = \sqrt {x + 1} + \sqrt {x - 1} , show that 4(x21)d2ydx2+4xdydxy=04\left( {{x^2} - 1} \right)\dfrac{{{d^2}y}}{{d{x^2}}} + 4x\dfrac{{dy}}{{dx}} - y = 0.

Explanation

Solution

We will find the value of dydx\dfrac{{dy}}{{dx}} by differentiating 2y=x+1+x12y = \sqrt {x + 1} + \sqrt {x - 1} with respect to xx, using the differentiation of d(x)dx=12x\dfrac{{d\left( {\sqrt x } \right)}}{{dx}} = \dfrac{1}{{2\sqrt x }} and then we will differentiate it to find the second order derivative of yy i.e., d2ydx2\dfrac{{{d^2}y}}{{d{x^2}}}. We will simplify the obtained equation using dydx\dfrac{{dy}}{{dx}} and will reduce it in the required form.

Complete step-by-step answer:
We are given that 2y=x+1+x12y = \sqrt {x + 1} + \sqrt {x - 1} .
We are required to prove that 4(x21)d2ydx2+4xdydxy=04\left( {{x^2} - 1} \right)\dfrac{{{d^2}y}}{{d{x^2}}} + 4x\dfrac{{dy}}{{dx}} - y = 0.
We will differentiate 2y=x+1+x12y = \sqrt {x + 1} + \sqrt {x - 1} with regard to xx for calculating dydx\dfrac{{dy}}{{dx}} and then, on differentiating dydx\dfrac{{dy}}{{dx}} again with respect to xx, we will get d2ydx2\dfrac{{{d^2}y}}{{d{x^2}}}.
Differentiating 2y=x+1+x12y = \sqrt {x + 1} + \sqrt {x - 1} both sides with respect to xx, we get
2dydx=d(x+1+x1)dx\Rightarrow 2\dfrac{{dy}}{{dx}} = \dfrac{{d\left( {\sqrt {x + 1} + \sqrt {x - 1} } \right)}}{{dx}}
Using the addition rule i.e., d(m+n)dx=dmdx+dndx\dfrac{{d\left( {m + n} \right)}}{{dx}} = \dfrac{{dm}}{{dx}} + \dfrac{{dn}}{{dx}}, we get
2dydx=d(x+1)dx+d(x1)dx\Rightarrow 2\dfrac{{dy}}{{dx}} = \dfrac{{d\left( {\sqrt {x + 1} } \right)}}{{dx}} + \dfrac{{d\left( {\sqrt {x - 1} } \right)}}{{dx}}
Using the differentiation of d(x)dx=12x\dfrac{{d\left( {\sqrt x } \right)}}{{dx}} = \dfrac{1}{{2\sqrt x }} in the above equation, we get
2dydx=12x+1+12x1\Rightarrow 2\dfrac{{dy}}{{dx}} = \dfrac{1}{{2\sqrt {x + 1} }} + \dfrac{1}{{2\sqrt {x - 1} }}
Or, we can write this equation as:
2dydx=x1+x+12(x+1x1)\Rightarrow 2\dfrac{{dy}}{{dx}} = \dfrac{{\sqrt {x - 1} + \sqrt {x + 1} }}{{2\left( {\sqrt {x + 1} \sqrt {x - 1} } \right)}}
Using the formula: mn=mn\sqrt m \sqrt n = \sqrt {mn} in the denominator and putting x1+x+1=2y\sqrt {x - 1} + \sqrt {x + 1} = 2y in the numerator, we get
dydx=2y4(x+1)(x1)\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{2y}}{{4\sqrt {\left( {x + 1} \right)\left( {x - 1} \right)} }}
Using the algebraic identity (a+b)(ab)=a2b2\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2} in the denominator, we get
dydx=2y4x21\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{2y}}{{4\sqrt {{x^2} - 1} }}
Now, differentiating dydx\dfrac{{dy}}{{dx}} with respect to xx, we get
d2ydx2=14(d(2yx21)dx)\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{1}{4}\left( {\dfrac{{d\left( {\dfrac{{2y}}{{\sqrt {{x^2} - 1} }}} \right)}}{{dx}}} \right)
Using the quotient rule: d(pq)dx=qd(p)dxpd(q)dx(q)2,q0\dfrac{{d\left( {\dfrac{p}{q}} \right)}}{{dx}} = \dfrac{{q\dfrac{{d\left( p \right)}}{{dx}} - p\dfrac{{d\left( q \right)}}{{dx}}}}{{{{\left( q \right)}^2}}},q \ne 0 of the differentiation, we get
d2ydx2=14(2dydxx212y(12x21×2x)(x21)2)\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{1}{4}\left( {\dfrac{{2\dfrac{{dy}}{{dx}}\sqrt {{x^2} - 1} - 2y\left( {\dfrac{1}{{2\sqrt {{x^2} - 1} }} \times 2x} \right)}}{{{{\left( {\sqrt {{x^2} - 1} } \right)}^2}}}} \right)
Upon simplifying this equation, we get
4d2ydx2=2x21dydxx2yx21x21\Rightarrow 4\dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{{2\sqrt {{x^2} - 1} \dfrac{{dy}}{{dx}} - x\dfrac{{2y}}{{\sqrt {{x^2} - 1} }}}}{{{x^2} - 1}}
Substituting the values of dydx\dfrac{{dy}}{{dx}} and putting 2yx21=4dydx\dfrac{{2y}}{{\sqrt {{x^2} - 1} }} = 4\dfrac{{dy}}{{dx}}, we get
4(x21)d2ydx2=2x21(2y4x21)4xdydx\Rightarrow 4\left( {{x^2} - 1} \right)\dfrac{{{d^2}y}}{{d{x^2}}} = 2\sqrt {{x^2} - 1} \left( {\dfrac{{2y}}{{4\sqrt {{x^2} - 1} }}} \right) - 4x\dfrac{{dy}}{{dx}}
On further simplifying this equation, we get
4(x21)d2ydx2=y4xdydx\Rightarrow 4\left( {{x^2} - 1} \right)\dfrac{{{d^2}y}}{{d{x^2}}} = y - 4x\dfrac{{dy}}{{dx}}
Or, we can write this as:
4(x21)d2ydx2+4xdydxy=0 \Rightarrow 4\left( {{x^2} - 1} \right)\dfrac{{{d^2}y}}{{d{x^2}}} + 4x\dfrac{{dy}}{{dx}} - y = 0 which is the required equation.

Note: In this question, you may get confused at many steps as there are numerous formulae used such as differentiation of x\sqrt x and other rules of differentiation (product rule and quotient rule). Be careful while substituting the values of dydx\dfrac{{dy}}{{dx}} in the obtained equation of d2ydx2\dfrac{{{d^2}y}}{{d{x^2}}} and further simplification can be tricky as well as we have manipulated various terms for obtaining our desired result.