Solveeit Logo

Question

Question: If \(2y\cos \theta = x\sin \theta \) and \(2x\sec \theta - y\cos ec\theta = 3\) then \({x^2} + 4{y^2...

If 2ycosθ=xsinθ2y\cos \theta = x\sin \theta and 2xsecθycosecθ=32x\sec \theta - y\cos ec\theta = 3 then x2+4y2={x^2} + 4{y^2} =
1. 44
2. 4 - 4
3. ±4 \pm 4
4. None of these

Explanation

Solution

First, we need to analyze the given information which is in the trigonometric form.

The trigonometric Identities are useful whenever trigonometric functions are involved in an expression or an equation and these identities are useful whenever expressions involving trigonometric functions need to be simplified.
From the given we asked to calculate the value x2+4y2={x^2} + 4{y^2} = ?, so we need to know the formulas in sine, cos, sec, cosec in the trigonometry.
Formula used:
sin2θ+cos2θ=1{\sin ^2}\theta + {\cos ^2}\theta = 1
secθ=1cosθ,cosecθ=1sinθ\sec \theta = \dfrac{1}{{\cos \theta }},\cos ec\theta = \dfrac{1}{{\sin \theta }}

Complete step-by-step solution:
Since from the given that we have to trigonometric functions 2ycosθ=xsinθ2y\cos \theta = x\sin \theta and 2xsecθycosecθ=32x\sec \theta - y\cos ec\theta = 3
Let us the function 2ycosθ=xsinθ2y\cos \theta = x\sin \theta as an equation (1)(1)
Now take the second function, which is given as 2xsecθycosecθ=32x\sec \theta - y\cos ec\theta = 3 and since we know that secθ=1cosθ,cosecθ=1sinθ\sec \theta = \dfrac{1}{{\cos \theta }},\cos ec\theta = \dfrac{1}{{\sin \theta }}, so apply these values in the given function then we get 2xsecθycosecθ=32x1cosθy1sinθ=32x\sec \theta - y\cos ec\theta = 3 \Rightarrow 2x\dfrac{1}{{\cos \theta }} - y\dfrac{1}{{\sin \theta }} = 3
Now cross multiplying these values, then we get 2x1cosθy1sinθ=32xsinθycosθsinθcosθ=32x\dfrac{1}{{\cos \theta }} - y\dfrac{1}{{\sin \theta }} = 3 \Rightarrow \dfrac{{2x\sin \theta - y\cos \theta }}{{\sin \theta \cos \theta }} = 3
Further solving the function, we get 2xsinθycosθ=3sinθcosθ2x\sin \theta - y\cos \theta = 3\sin \theta \cos \theta
Now substitute the equation (1)(1) in the above equation then we get; 2xsinθycosθ=3sinθcosθ2(2ycosθ)ycosθ=3sinθcosθ2x\sin \theta - y\cos \theta = 3\sin \theta \cos \theta \Rightarrow 2(2y\cos \theta ) - y\cos \theta = 3\sin \theta \cos \theta
Further solving, 4ycosθycosθ=3sinθcosθ3ycosθ=3sinθcosθ4y\cos \theta - y\cos \theta = 3\sin \theta \cos \theta \Rightarrow 3y\cos \theta = 3\sin \theta \cos \theta and canceling the common terms and thus we have 3ycosθ=3sinθcosθy=sinθ3y\cos \theta = 3\sin \theta \cos \theta \Rightarrow y = \sin \theta
Now substitute the value of y=sinθy = \sin \theta in the equation (1)(1) then we get 2ycosθ=xsinθ2sinθcosθ=xsinθ2y\cos \theta = x\sin \theta \Rightarrow 2\sin \theta \cos \theta = x\sin \theta again canceling the common terms, we get 2sinθcosθ=xsinθcosθ=x22\sin \theta \cos \theta = x\sin \theta \Rightarrow \cos \theta = \dfrac{x}{2}
Hence, we have the values y=sinθy = \sin \theta and cosθ=x2\cos \theta = \dfrac{x}{2}. Now apply these values in the general equation sin2θ+cos2θ=1{\sin ^2}\theta + {\cos ^2}\theta = 1 then we get sin2θ+cos2θ=1y2+(x2)2=1{\sin ^2}\theta + {\cos ^2}\theta = 1 \Rightarrow {y^2} + {(\dfrac{x}{2})^2} = 1
Further solving we get y2+x222=14y2+x24=14y2+x2=4{y^2} + \dfrac{{{x^2}}}{{{2^2}}} = 1 \Rightarrow \dfrac{{4{y^2} + {x^2}}}{4} = 1 \Rightarrow 4{y^2} + {x^2} = 4 which is the required value.
Hence option A)4A)4 is correct.

Note: Simply using the trigonometric value of sine and cos for the sec and cosec we solved the given function.
Where sine and cos can also be written as secθ=1cosθ,cosecθ=1sinθcosθ=1secθ,sinθ=1cosecθ\sec \theta = \dfrac{1}{{\cos \theta }},\cos ec\theta = \dfrac{1}{{\sin \theta }} \Rightarrow \cos \theta = \dfrac{1}{{\sec \theta }},\sin \theta = \dfrac{1}{{\cos ec\theta }} because they are interrelated.
In total there are six trigonometric values which are sine, cos, tan, sec, cosec, cot while all the values have been relation like sincos=tan\dfrac{{\sin }}{{\cos }} = \tan and tan=1cot\tan = \dfrac{1}{{\cot }}