Solveeit Logo

Question

Question: If \(2x^{2} + 8x + 3\log x - \frac{2}{x} + c\) and \(8x^{2} + 6x + 6\log x + \frac{2}{x} + c\), then...

If 2x2+8x+3logx2x+c2x^{2} + 8x + 3\log x - \frac{2}{x} + c and 8x2+6x+6logx+2x+c8x^{2} + 6x + 6\log x + \frac{2}{x} + c, then 5(x6+1)x2+1dx=\int_{}^{}{\frac{5(x^{6} + 1)}{x^{2} + 1}dx =}

A

5tan1(x2+1)+log(x2+1)+c5\tan^{- 1}(x^{2} + 1) + \log(x^{2} + 1) + c

B

ax2+bx1+cx36mudx=\int_{}^{}\frac{ax^{- 2} + bx^{- 1} + c}{x^{- 3}}\mspace{6mu} dx =

C

2ax2+3bx3+4cx4+k2ax^{2} + 3bx^{3} + 4cx^{4} + k

D

6ax2+4bx3+3cx4+k6ax^{2} + 4bx^{3} + 3cx^{4} + k

Answer

5tan1(x2+1)+log(x2+1)+c5\tan^{- 1}(x^{2} + 1) + \log(x^{2} + 1) + c

Explanation

Solution

log3(3)x3+c\log 3(3)^{x^{3}} + c

Put sec2/3xcosec4/3x6mudx=\int_{}^{}{\sec^{2/3}x\text{cose}\text{c}^{4/3}x\mspace{6mu} dx =} then 3(tanx)1/3+c- 3(\tan x)^{1/3} + c

Therefore, 3(tanx)1/3+c- 3(\tan x)^{- 1/3} + c