Solveeit Logo

Question

Question: If \[2x = {y^{\dfrac{1}{5}}} + {y^{ - \dfrac{1}{5}}}\] and \[\left( {{x^2} - 1} \right)\dfrac{{{d^2}...

If 2x=y15+y152x = {y^{\dfrac{1}{5}}} + {y^{ - \dfrac{1}{5}}} and (x21)d2ydx2+λxdydx+ky=0\left( {{x^2} - 1} \right)\dfrac{{{d^2}y}}{{d{x^2}}} + \lambda x\dfrac{{dy}}{{dx}} + ky = 0, then λ+k\lambda + k is equal to
(A). -23
(B). -24
(C). 26
(D). -26

Explanation

Solution

To solve the question, at first we have to consider y15{y^{\dfrac{1}{5}}} to be ‘p’. Then solving the quadratic equation in terms of ‘p’ we can express y in terms of x. then differentiating y with respect to x we can obtain the expression for dydx\dfrac{{dy}}{{dx}} and again differentiating with respect to x we will get second order differential equation. Finally comparing the obtained differential equation with the differential equation (x21)d2ydx2+λxdydx+ky=0\left( {{x^2} - 1} \right)\dfrac{{{d^2}y}}{{d{x^2}}} + \lambda x\dfrac{{dy}}{{dx}} + ky = 0 we can get the values of λ\lambda and k. Thus the value of λ+k\lambda + k can be determined.

Complete step-by-step answer :
Given that
2x=y15+y152x = {y^{\dfrac{1}{5}}} + {y^{ - \dfrac{1}{5}}} ... (1)
To solve the above equation consider p=y15p = {y^{\dfrac{1}{5}}}, then 1p=y15\dfrac{1}{p} = {y^{ - \dfrac{1}{5}}}. So substituting these values the eq. (1) reduces to

2x=p+1p p22xp+1=0  \Rightarrow 2x = p + \dfrac{1}{p} \\\ \Rightarrow {p^2} - 2xp + 1 = 0 \\\

…………………………………… (2)
We know that the roots of a quadratic equation ax2+bx+c=0a{x^2} + bx + c = 0 is given by
x=b±b24ac2ax = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}} …………………………………. (3)
Now applying this formula to eq. (2) we will get

p=(2x)±(2x)24×1×12×1 =2x±4x24×1×12 =x±x21  p = \dfrac{{ - \left( { - 2x} \right) \pm \sqrt {{{\left( { - 2x} \right)}^2} - 4 \times 1 \times 1} }}{{2 \times 1}} \\\ = \dfrac{{2x \pm \sqrt {4{x^2} - 4 \times 1 \times 1} }}{2} \\\ = x \pm \sqrt {{x^2} - 1} \\\

……………………..………………. (4)
Substituting the value of p=y15p = {y^{\dfrac{1}{5}}}in eq. (4) we will get,

y15=x±x21 y=(x±x21)5  \Rightarrow {y^{\dfrac{1}{5}}} = x \pm \sqrt {{x^2} - 1} \\\ \Rightarrow y = {\left( {x \pm \sqrt {{x^2} - 1} } \right)^5} \\\

……………………………………… (5)
Now differentiating eq. (5) with respect to x on both the sides, we will get

dydx=ddx(x±x21)5 dydx=5(x±x21)4ddx(x±x21) dydx=5(x±x21)4(1±2x2x21) dydx=5(x±x21)4(x21±xx21) dydx=5(x±x21)4(x21±xx21) dydx=5(x±x21)5(1x21)  \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}{\left( {x \pm \sqrt {{x^2} - 1} } \right)^5} \\\ \Rightarrow \dfrac{{dy}}{{dx}} = 5{\left( {x \pm \sqrt {{x^2} - 1} } \right)^4} \cdot \dfrac{d}{{dx}}\left( {x \pm \sqrt {{x^2} - 1} } \right) \\\ \Rightarrow \dfrac{{dy}}{{dx}} = 5{\left( {x \pm \sqrt {{x^2} - 1} } \right)^4} \cdot \left( {1 \pm \dfrac{{2x}}{{2\sqrt {{x^2} - 1} }}} \right) \\\ \Rightarrow \dfrac{{dy}}{{dx}} = 5{\left( {x \pm \sqrt {{x^2} - 1} } \right)^4} \cdot \left( {\dfrac{{\sqrt {{x^2} - 1} \pm x}}{{\sqrt {{x^2} - 1} }}} \right) \\\ \Rightarrow \dfrac{{dy}}{{dx}} = 5{\left( {x \pm \sqrt {{x^2} - 1} } \right)^4} \cdot \left( {\dfrac{{\sqrt {{x^2} - 1} \pm x}}{{\sqrt {{x^2} - 1} }}} \right) \\\ \Rightarrow \dfrac{{dy}}{{dx}} = - 5{\left( {x \pm \sqrt {{x^2} - 1} } \right)^5} \cdot \left( {\dfrac{1}{{\sqrt {{x^2} - 1} }}} \right) \\\

…………………………………….. (6)
Substituting the value of eq. (5) in eq. (6) we will get,
dydx=5yx21\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{ - 5y}}{{\sqrt {{x^2} - 1} }} ………..…………………………. (7)
x21dydx=5y\Rightarrow \sqrt {{x^2} - 1} \dfrac{{dy}}{{dx}} = - 5y …………………………………… (8)
Differentiating eq. (7) with respect to x on both the sides, we will get

d2ydx2=ddx(5yx21) d2ydx2=(x21(5dydx)(5y)2x2x21x21) (x21)d2ydx2=(5)(x21dydx)x×(5y)x21  \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{d}{{dx}}\left( {\dfrac{{ - 5y}}{{\sqrt {{x^2} - 1} }}} \right) \\\ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \left( {\dfrac{{\sqrt {{x^2} - 1} \left( { - 5\dfrac{{dy}}{{dx}}} \right) - \left( { - 5y} \right)\dfrac{{2x}}{{2\sqrt {{x^2} - 1} }}}}{{{x^2} - 1}}} \right) \\\ \Rightarrow \left( {{x^2} - 1} \right)\dfrac{{{d^2}y}}{{d{x^2}}} = \left( { - 5} \right)\left( {\sqrt {{x^2} - 1} \dfrac{{dy}}{{dx}}} \right) - x \times \dfrac{{\left( { - 5y} \right)}}{{\sqrt {{x^2} - 1} }} \\\

…………………………………….. (9)
Substituting the value of eq. (7) and (8) in eq. (9) we will get,

(x21)d2ydx2=(5)(5y)xdydx (x21)d2ydx2=25yxdydx (x21)d2ydx2+1.xdydx+(25)y=0   \Rightarrow \left( {{x^2} - 1} \right)\dfrac{{{d^2}y}}{{d{x^2}}} = \left( { - 5} \right)\left( { - 5y} \right) - x\dfrac{{dy}}{{dx}} \\\ \Rightarrow \left( {{x^2} - 1} \right)\dfrac{{{d^2}y}}{{d{x^2}}} = 25y - x\dfrac{{dy}}{{dx}} \\\ \Rightarrow \left( {{x^2} - 1} \right)\dfrac{{{d^2}y}}{{d{x^2}}} + 1.x\dfrac{{dy}}{{dx}} + ( - 25)y = 0 \\\ \\\

…………………………………….. (10)
But given equation is
(x21)d2ydx2+λxdydx+ky=0\left( {{x^2} - 1} \right)\dfrac{{{d^2}y}}{{d{x^2}}} + \lambda x\dfrac{{dy}}{{dx}} + ky = 0 ……………………………….. (11)
Now comparing eq. (10) and (11) we will get, the values of λ\lambda and k which is given by
λ=1\lambda = 1 And k=25k = - 25.
Therefore λ+k=125=24\lambda + k = 1 - 25 = - 24
The option (B) is correct.

Note : The formula for quotient rule of derivative is given by ddx[f(x)g(x)]=g(x)f(x)f(x)g(x)[g(x)]2\dfrac{d}{{dx}}\left[ {\dfrac{{f(x)}}{{g(x)}}} \right] = \dfrac{{g(x)f'(x) - f(x)g'(x)}}{{{{\left[ {g(x)} \right]}^2}}}.