Solveeit Logo

Question

Question: If $2x$ is defined as inverse function of $x^2-5x+6, x\le \frac{5}{2}$ Then find $1>20$...

If 2x2x is defined as inverse function of x25x+6,x52x^2-5x+6, x\le \frac{5}{2}

Then find

1>201>20

Answer

-2

Explanation

Solution

We are given the function

f(x)=x25x+6withx52.f(x)=x^2-5x+6 \quad \text{with} \quad x\le \frac{5}{2}.

The inverse function f1f^{-1} is defined on the range of ff for this restricted domain. To find f1(20)f^{-1}(20), solve for xx in:

x25x+6=20.x^2-5x+6=20.

Subtract 20 from both sides:

x25x14=0.x^2-5x-14=0.

Factor or use the quadratic formula:

x=5±25+562=5±812=5±92.x=\frac{5\pm\sqrt{25+56}}{2}=\frac{5\pm\sqrt{81}}{2}=\frac{5\pm 9}{2}.

So, the solutions are:

x=5+92=7andx=592=2.x= \frac{5+9}{2}=7 \quad \text{and} \quad x=\frac{5-9}{2}=-2.

Since the original function has domain x52x\le \frac{5}{2}, we choose x=2x=-2.

Thus,

f1(20)=2.f^{-1}(20)=-2.