Solveeit Logo

Question

Mathematics Question on Conic sections

If 2x+3y+12=02x + 3y + 12 = 0 and xy+4λx - y + 4\lambda = 0 are conjugate with respect to the parabola y2=8x,y^2 = 8x, then λ \lambda is equal to

A

2

B

-2

C

3

D

-3

Answer

-3

Explanation

Solution

Using the condition that if two lines l1x+m1y+n1=0l_1 x + m_1y+n_1 = 0 and l2x+m2y+n2=0l_2 x + m_2y +n_2 = 0 are conjugate w.r.t. parabola y2=4axy^2 = 4ax, then l1n2+l2n1=2am1m2...(1)l_1 n_2 +l_2n_1= 2am_1m_2\quad ...(1) Given conjugate lines are 2x+3y+12=02x + 3y + 12 = 0 and xy+4λ=0x - y + 4\lambda = 0 and equation of parabola is y2=8xy^2 = 8x Here, l1=2,m1=3,n1=12;l2=1,m2=1 l_1 = 2, m_1 = 3, n_1 = 12 ; l_2 = 1, m_2 = - 1, n2=4λn_2= 4\lambda and a=2a = 2 from (1)2×4λ+1×12=2×2×3×(1)(1) 2 \times 4\lambda + 1 \times 12 = 2 \times 2 \times 3 \times (- 1) 8λ=12128\lambda = - 12 - 12 λ=3\Rightarrow \lambda = - 3.