Solveeit Logo

Question

Question: : If \[2x = 3 + 5i\], then the value of \[2{x^3} + 2{x^2} - 7x + 72\] is 1 \[4\] 2 \[ - 4\] 3 ...

: If 2x=3+5i2x = 3 + 5i, then the value of 2x3+2x27x+722{x^3} + 2{x^2} - 7x + 72 is
1 44
2 4 - 4
3 88
4 8 - 8

Explanation

Solution

To find the value of 2x3+2x27x+722{x^3} + 2{x^2} - 7x + 72, we need to find the value of xx from the given expression 2x=3+5i2x = 3 + 5i, then from the obtained value of xx; find x2{x^2} and x3{x^3} respectively. Then substitute the obtained value of xx, x2{x^2} and x3{x^3} in the given expression 2x3+2x27x+722{x^3} + 2{x^2} - 7x + 72.

Complete step by step answer:
Let us write the given data:
2x=3+5i2x = 3 + 5i
In which the equation can be written in terms of xxas:
x=3+5i2x = \dfrac{{3 + 5i}}{2}
Then with respect to xx, x3{x^3} becomes
x3=(3+5i2)3{x^3} = {\left( {\dfrac{{3 + 5i}}{2}} \right)^3}
Expanding the cube root terms, we get:
x3=(27+135i225125i8)\Rightarrow {x^3} = \left( {\dfrac{{27 + 135i - 225 - 125i}}{8}} \right)
x3=(198+10i)8\Rightarrow {x^3} = \dfrac{{\left( { - 198 + 10i} \right)}}{8}
And now to obtain the value of x2{x^2}, we have:
x2=(925+30i)4\Rightarrow {x^2} = \dfrac{{\left( {9 - 25 + 30i} \right)}}{4}
x2=(16+30i)4\Rightarrow {x^2} = \dfrac{{\left( { - 16 + 30i} \right)}}{4}
Hence, to find the value of 2x3+2x27x+722{x^3} + 2{x^2} - 7x + 72, we need to substitute all the obtained values of xx, x2{x^2}andx3{x^3}i.e.,
2x3+2x27x+72=2(198+10i)8+2(16+30i)47(3+5i)2+722{x^3} + 2{x^2} - 7x + 72 = 2\dfrac{{\left( { - 198 + 10i} \right)}}{8} + 2\dfrac{{\left( { - 16 + 30i} \right)}}{4} - 7\dfrac{{\left( {3 + 5i} \right)}}{2} + 72
Evaluate each term, as:
=(9928212+72)+[(104+15)352]i= \left( {\dfrac{{ - 99}}{2} - 8 - \dfrac{{21}}{2} + 72} \right) + \left[ {\left( {\dfrac{{10}}{4} + 15} \right)\dfrac{{ - 35}}{2}} \right]i
Simplifying the terms, we have:
=(991621+1442)+(10+60704)i= \left( {\dfrac{{ - 99 - 16 - 21 + 144}}{2}} \right) + \left( {\dfrac{{10 + 60 - 70}}{4}} \right)i
Evaluating the numerator terms, we get:
=(82)+(04)i= \left( {\dfrac{8}{2}} \right) + \left( {\dfrac{0}{4}} \right)i
=82= \dfrac{8}{2}
Hence, we get:
=4= 4
2x3+2x27x+72=4\therefore 2{x^3} + 2{x^2} - 7x + 72 = 4

So, the correct answer is “Option 1”.

Note: The key point to note is that, the given expression is not quadratic hence, while finding the value of xx from the given expression we must also find the value of xx, such that find x2{x^2} and x3{x^3} we need to substitute in the given asked expression.