Solveeit Logo

Question

Mathematics Question on Binomial theorem

If (2x2x1)5=a0+a1x+a2x2+...+a10x10(2x^2 - x - 1)^5 = a_0 + a_1x + a_2x^2 + ... + a_{10}x^{10}, then, a2+a4+a6+a8+a10=a_2 + a_4 + a_6 + a_8 + a_{10} =

A

1515

B

3030

C

1616

D

1717

Answer

1717

Explanation

Solution

(2x2x1)5=a0+a1x+a2x2+...+a10x10(2x^2 - x - 1)^5 = a_0 + a_1x + a_2x^2 + ... + a_{10}x^{10} Put x=1x = 1, we get, 0=a0+a1+a2+...+a10...(i)0 = a_0 + a_1 + a_2 + ... + a_{10} \quad ...(i) Put x=1x = - 1, we get, 32=a0a1+a2...+a10...(ii)32 = a_0 - a_1 + a_2 - ... + a_{10} \quad ...(ii) Adding (i)(i) and (ii)(ii), we get a2+a4+...+a10=(32/2)+1a_2 + a_4 + ... + a_{10} = (32/2) + 1 =16+1=17(a0=1) = 16 + 1 = 17 \,\,(\because a_0 = - 1)