Solveeit Logo

Question

Question: If \(2\tan A = 3\tan B,\) then \(\frac{\sin 2B}{5 - \cos 2B}\) is equal to...

If 2tanA=3tanB,2\tan A = 3\tan B, then sin2B5cos2B\frac{\sin 2B}{5 - \cos 2B} is equal to

A

tanA– tanB

B

tan(AB)\tan(A - B)

C

tan(A+B)\tan(A + B)

D

tan(A+2B)\tan(A + 2B)

Answer

tan(AB)\tan(A - B)

Explanation

Solution

2tanA=3tanB2\tan A = 3\tan BtanA=32tanB=32t\tan A = \frac{3}{2}\tan B = \frac{3}{2}t

(Let tanB=t\tan B = t) ⇒ sin2B=2t1+t2,cos2B=1t21+t2\sin 2B = \frac{2t}{1 + t^{2}},\cos 2B = \frac{1 - t^{2}}{1 + t^{2}}

sin2B5cos2B=\frac { \sin 2 B } { 5 - \cos 2 B } = (2t1+t2)5(1t21+t2)=2t4+6t2=t2+3t2=tan(AB)\frac{\left( \frac{2t}{1 + t^{2}} \right)}{5 - \left( \frac{1 - t^{2}}{1 + t^{2}} \right)} = \frac{2t}{4 + 6t^{2}} = \frac{t}{2 + 3t^{2}} = \tan(A - B).