Solveeit Logo

Question

Question: If 2<sup>x</sup> + 2<sup>y</sup> = 2<sup>x + y</sup>, then \(\frac{dy}{dx}\)is equal to –...

If 2x + 2y = 2x + y, then dydx\frac{dy}{dx}is equal to –

A

2x+2y2x2y\frac{2^{x} + 2^{y}}{2^{x} - 2^{y}}

B

2x+2y1+2x+y\frac{2^{x} + 2^{y}}{1 + 2^{x + y}}

C

2xy(2y112x)2^{x - y}\left( \frac{2^{y} - 1}{1 - 2^{x}} \right)

D

(2x+y2x2y)\left( \frac{2^{x + y} - 2^{x}}{2^{y}} \right)

Answer

2xy(2y112x)2^{x - y}\left( \frac{2^{y} - 1}{1 - 2^{x}} \right)

Explanation

Solution

Here 2x + 2y = 2x + y

Diff. w.r.t. x,

2x log 2 + 2y log 2 dydx\frac{dy}{dx} = 2x + y . log 2(1+dydx)\left( 1 + \frac{dy}{dx} \right)

̃ dydx\frac{dy}{dx} (2y – 2x + y) = 2x + y – 2x

̃ dydx\frac{dy}{dx}= 2x(2y1)2y(12x)\frac{2^{x}(2^{y} - 1)}{2^{y}(1 - 2^{x})}

̃ dydx\frac{dy}{dx} = 2x – y . (2y112x)\left( \frac{2^{y} - 1}{1–2^{x}} \right).