Solveeit Logo

Question

Question: If 2sinx+5cosy+7sinz = 14, then find the value of \(7\tan \dfrac{x}{2}+4\cos y-6\sin z\)....

If 2sinx+5cosy+7sinz = 14, then find the value of 7tanx2+4cosy6sinz7\tan \dfrac{x}{2}+4\cos y-6\sin z.

Explanation

Solution

Hint: Use the fact that xR,sinx1\forall x\in \mathbb{R},\sin x\le 1 and xR,cosx1\forall x\in \mathbb{R},\cos x\le 1. Hence prove that if the solution of the equation exists then sinz1\sin z\ge 1. Hence argue that sinz =1 and hence cosy = 1 and sinx = 1. Hence prove that x=π2,y=0x=\dfrac{\pi }{2},y=0 and z=π2z=\dfrac{\pi }{2}. Use the fact that tan(π4)=1\tan \left( \dfrac{\pi }{4} \right)=1 and hence find the value of 7tan(x2)+4cosy6sinz7\tan \left( \dfrac{x}{2} \right)+4\cos y-6\sin z.

Complete step-by-step answer:

We have 2sinx+5cosy+7sinz=14.
We know that xR,sinx1\forall x\in \mathbb{R},\sin x\le 1 and xR,cosx1\forall x\in \mathbb{R},\cos x\le 1
Hence, we have 2sinx22\sin x\le 2 and 5cosy55\cos y\le 5
Hence, we have 2sinx+5cosy5+2=72\sin x+5\cos y\le 5+2=7
Adding 7sinz on both sides, we get
2sinx+5cosy+7sinz7+7sinz2\sin x+5\cos y+7\sin z\le 7+7\sin z
From the equation, we have 2sinx+5cosy+7sinz = 14
Hence, we have 147+7sinz14\le 7+7\sin z
Subtracting 7 from both sides, we get
7sinz77\sin z\ge 7
Dividing both sides by 7, we get
sinz1\sin z\ge 1
But, we know that sinz1\sin z\le 1
Hence, we have sinz=1\sin z=1
When sinz = 1, we have
2sinx+5cosy+7=142\sin x+5\cos y+7=14
Subtracting 7 from both sides, we get
2sinx+5cosy=7 (i)2\sin x+5\cos y=7\text{ }\left( i \right)
Now, we know that 5cosy55\cos y\le 5
Adding 2 sinx from both sides, we get
2sinx+5cosy5+2sinx2\sin x+5\cos y\le 5+2\sin x
From equation (i), we have 2sinx+5cosy = 7
Hence, we have
75+2sinx7\le 5+2\sin x
Subtracting 5 from both sides, we get
2sinx22\sin x\ge 2
Dividing both sides by 2, we get
sinx1\sin x\ge 1
But, we know that sinx1\sin x\le 1
Hence, we have
sinx=1\sin x=1
Hence equation (i) becomes
5cosy+2=75\cos y+2=7
Subtracting 2 from both sides, we get
5cosy=55\cos y=5
Dividing both sides by 5, we get
cosy=1\cos y=1
Hence, we have x=π2,y=0x=\dfrac{\pi }{2},y=0 and z=π2z=\dfrac{\pi }{2}
Hence, we have 7tanx2+4cosy6sinz=7tan(π4)+4cos06sin(π2)=7+46=57\tan \dfrac{x}{2}+4\cos y-6\sin z=7\tan \left( \dfrac{\pi }{4} \right)+4\cos 0-6\sin \left( \dfrac{\pi }{2} \right)=7+4-6=5
Hence the value of 7tanx2+4cosy6sinz7\tan \dfrac{x}{2}+4\cos y-6\sin z is 5.

Note: [1] When we have an equation involving multiple variables in sines and cosines, we must check whether RHS is the maxima or minima of the expression or not. If RHS is the maxima or minima, then the sines and cosines also take extrema. This is the case in the above question.