Solveeit Logo

Question

Question: If \(2^{\sin x} + 2^{\cos x} > 2^{1 - (1/\sqrt{2})}\), then \(x = \frac{5\pi}{4}\) equals...

If 2sinx+2cosx>21(1/2)2^{\sin x} + 2^{\cos x} > 2^{1 - (1/\sqrt{2})}, then x=5π4x = \frac{5\pi}{4} equals

A

(1+tanθ)(1+tanφ)=2tanθ+tanφ1tanθtanφ=1(1 + \tan\theta)(1 + \tan\varphi) = 2 \Rightarrow \frac{\tan\theta + \tan\varphi}{1 - \tan\theta\tan\varphi} = 1

B

\Rightarrow

C

tan(θ+φ)=1\tan(\theta + \varphi) = 1

D

\Rightarrow

Answer

tan(θ+φ)=1\tan(\theta + \varphi) = 1

Explanation

Solution

1sin2C21sin2B2=1sin2B21sin2A2\frac{1}{\sin^{2}\frac{C}{2}} - \frac{1}{\sin^{2}\frac{B}{2}} = \frac{1}{\sin^{2}\frac{B}{2}} - \frac{1}{\sin^{2}\frac{A}{2}}

ab(sa)(sb)ac(sa)(sc)\frac{ab}{(s - a)(s - b)} - \frac{ac}{(s - a)(s - c)}=ac(sa)(sc)bc(sb)(sc)= \frac{ac}{(s - a)(s - c)} - \frac{bc}{(s - b)(s - c)}.