Solveeit Logo

Question

Mathematics Question on Inverse Trigonometric Functions

If 2sin1x3cos1x=42sin^{-1}x - 3cos^{-1}x = 4, then 2sin1x+3cos1x2sin^{-1}x + 3cos^{-1}x is equal to

A

6π45\frac{6\pi -4}{5}

B

46π5\frac{4 - 6\pi}{5}

C

3π2\frac{3\pi }{2}

D

00

Answer

6π45\frac{6\pi -4}{5}

Explanation

Solution

2sin1x3cos1x=42sin^{-1}x - 3cos^{-1}x = 4 2(π2cos1x)3cos1x=4\Rightarrow 2\left(\frac{\pi}{2}-cos^{-1}\,x\right) - 3cos^{-1}x = 4 π5cosx=4\Rightarrow \pi - 5cos^{-x} = 4 cos1x=π45\Rightarrow cos^{-1}x =\frac{\pi - 4}{5} 3cos1x=3π125(i)\Rightarrow 3cos^{-1}x = \frac{3\pi -12}{5}\quad\cdots\left(i\right) Similarly, 2sin1x3(π2sin1x)=42sin^{-1}x - 3\left(\frac{\pi}{2}-sin^{-1}\,x\right) = 4 5sin1x=4+3π2\Rightarrow 5sin^{-1}x = 4 + \frac{3\pi}{2} sin1x=(45+3π2)\Rightarrow sin^{-1}x = \left(\frac{4}{5}+\frac{3\pi }{2}\right) 2sin1x=(85+3π5)(ii)\Rightarrow 2sin^{-1}x = \left(\frac{8}{5}+\frac{3\pi }{5}\right)\quad\cdots\left(ii\right) Adding e (i)\left(i\right) and (ii)\left(ii\right), we get 2sin1x+3cos1x=8+3π5+3π1252 sin^{-1} x + 3 cos^{-1}x = \frac{8+3\pi}{5}+\frac{3\pi-12}{5} =6π45= \frac{6\pi -4}{5}