Question
Question: If \(2s = a + b + c\) then \(\left| {\begin{array}{*{20}{c}} {{a^2}}&{{{\left( {s - a} \right)}^...
If 2s=a+b+c then \left| {\begin{array}{*{20}{c}}
{{a^2}}&{{{\left( {s - a} \right)}^2}}&{{{\left( {s - a} \right)}^2}} \\\
{{{\left( {s - b} \right)}^2}}&{{b^2}}&{{{\left( {s - b} \right)}^2}} \\\
{{{\left( {s - c} \right)}^2}}&{{{\left( {s - c} \right)}^2}}&{{c^2}}
\end{array}} \right| is equal to
A. 2s(s−a)(s−b)(s−c)
B. 2s3(s−a)(s−b)(s−c)
C. 2s2(s−a)(s−b)(s−c)
D. (s−a)(s−b)(s−c)
Solution
To find the value of a given determinant, first we will convert it into the simplest form. Then, we will perform column and row operations to simplify the determinant.
Complete step-by-step solution:
In this problem, given that 2s=a+b+c. Let us say a given determinant is denoted by D. So, we need to find the value of D = \left| {\begin{array}{*{20}{c}}
{{a^2}}&{{{\left( {s - a} \right)}^2}}&{{{\left( {s - a} \right)}^2}} \\\
{{{\left( {s - b} \right)}^2}}&{{b^2}}&{{{\left( {s - b} \right)}^2}} \\\
{{{\left( {s - c} \right)}^2}}&{{{\left( {s - c} \right)}^2}}&{{c^2}}
\end{array}} \right|.
To convert into the simplest form, let us assume s−a=p,s−b=q and s−c=r. Then, p+q=s−a+s−b=2s−a−b=c[∵2s=a+b+c] q+r=s−b+s−c=2s−b−c=a[∵2s=a+b+c] r+p=s−c+s−a=2s−a−c=b[∵2s=a+b+c] p+q+r=s−a+s−b+s−c=3s−(a+b+c)=3s−2s=s[∵2s=a+b+c]
Now we can write the given determinant as D = \left| {\begin{array}{*{20}{c}}
{{{\left( {q + r} \right)}^2}}&{{p^2}}&{{p^2}} \\\
{{q^2}}&{{{\left( {r + p} \right)}^2}}&{{q^2}} \\\
{{r^2}}&{{r^2}}&{{{\left( {p + q} \right)}^2}}
\end{array}} \right|.
Now we will perform column operations to simplify the above determinant.
Applying C1→C1−C2 and C2→C2−C3, we get
D = \left| {\begin{array}{*{20}{c}}
{{{\left( {q + r} \right)}^2} - {p^2}}&{{p^2} - {p^2}}&{{p^2}} \\\
{{q^2} - {{\left( {r + p} \right)}^2}}&{{{\left( {r + p} \right)}^2} - {q^2}}&{{q^2}} \\\
{{r^2} - {r^2}}&{{r^2} - {{\left( {p + q} \right)}^2}}&{{{\left( {p + q} \right)}^2}}
\end{array}} \right|
Use the formula a2−b2=(a−b)(a+b) and simplify the above determinant, we get
D = \left| {\begin{array}{*{20}{c}}
{\left( {q + r - p} \right)\left( {q + r + p} \right)}&0&{{p^2}} \\\
{\left( {q - r - p} \right)\left( {q + r + p} \right)}&{\left( {r + p - q} \right)\left( {r + p + q} \right)}&{{q^2}} \\\
0&{\left( {r - p - q} \right)\left( {r + p + q} \right)}&{{{\left( {p + q} \right)}^2}}
\end{array}} \right|
Let us take the factor (p+q+r) common out from the first and second column. Therefore, we get
D = {\left( {p + q + r} \right)^2}\left| {\begin{array}{*{20}{c}}
{\left( {q + r - p} \right)}&0&{{p^2}} \\\
{\left( {q - r - p} \right)}&{\left( {r + p - q} \right)}&{{q^2}} \\\
0&{\left( {r - p - q} \right)}&{{{\left( {p + q} \right)}^2}}
\end{array}} \right|
Applying R3→R3−(R1+R2), we get
D = {\left( {p + q + r} \right)^2}\left| {\begin{array}{*{20}{c}}
{\left( {q + r - p} \right)}&0&{{p^2}} \\\
{\left( {q - r - p} \right)}&{\left( {r + p - q} \right)}&{{q^2}} \\\
{0 - \left( {q + r - p + q - r - p} \right)}&{\left( {r - p - q} \right) - \left( {0 + r + p - q} \right)}&{{{\left( {p + q} \right)}^2} - \left( {{p^2} + {q^2}} \right)}
\end{array}} \right|
Simplify the above determinant, we get
D = {\left( {p + q + r} \right)^2}\left| {\begin{array}{*{20}{c}}
{\left( {q + r - p} \right)}&0&{{p^2}} \\\
{\left( {q - r - p} \right)}&{\left( {r + p - q} \right)}&{{q^2}} \\\
{2p - 2q}&{ - 2p}&{2pq}
\end{array}} \right|\quad \left[ {\because {{\left( {p + q} \right)}^2} = {p^2} + 2pq + {q^2}} \right]
Let us take the number 2 common out from the third row. Therefore, we get
D = 2{\left( {p + q + r} \right)^2}\left| {\begin{array}{*{20}{c}}
{\left( {q + r - p} \right)}&0&{{p^2}} \\\
{\left( {q - r - p} \right)}&{\left( {r + p - q} \right)}&{{q^2}} \\\
{p - q}&{ - p}&{pq}
\end{array}} \right|
Applying R1→R1−(qp)R3, we get
D = 2{\left( {p + q + r} \right)^2}\left| {\begin{array}{*{20}{c}}
{\left( {q + r - p} \right) - \dfrac{p}{q}\left( {p - q} \right)}&{0 - \dfrac{p}{q}\left( { - p} \right)}&{{p^2} - \dfrac{p}{q}\left( {pq} \right)} \\\
{\left( {q - r - p} \right)}&{\left( {r + p - q} \right)}&{{q^2}} \\\
{p - q}&{ - p}&{pq}
\end{array}} \right|
Simplify the above determinant, we get
D = 2{\left( {p + q + r} \right)^2}\left| {\begin{array}{*{20}{c}}
{q + r - \dfrac{{{p^2}}}{q}}&{\dfrac{{{p^2}}}{q}}&0 \\\
{\left( {q - r - p} \right)}&{\left( {r + p - q} \right)}&{{q^2}} \\\
{p - q}&{ - p}&{pq}
\end{array}} \right|
Applying R2→R2−(pq)R3, we get
D = 2{\left( {p + q + r} \right)^2}\left| {\begin{array}{*{20}{c}}
{q + r - \dfrac{{{p^2}}}{q}}&{\dfrac{{{p^2}}}{q}}&0 \\\
{\left( {q - r - p} \right) - \dfrac{q}{p}\left( {p - q} \right)}&{\left( {r + p - q} \right) - \dfrac{q}{p}\left( { - p} \right)}&{{q^2} - \dfrac{q}{p}\left( {pq} \right)} \\\
{p - q}&{ - p}&{pq}
\end{array}} \right|
Simplify the above determinant, we get
D = 2{\left( {p + q + r} \right)^2}\left| {\begin{array}{*{20}{c}}
{q + r - \dfrac{{{p^2}}}{q}}&{\dfrac{{{p^2}}}{q}}&0 \\\
{ - r - p + \dfrac{{{q^2}}}{p}}&{r + p}&0 \\\
{p - q}&{ - p}&{pq}
\end{array}} \right|
We can see that in the third column two elements are zero. So, let us expand the above determinant along the third column. Therefore, we get
D = 2pq{\left( {p + q + r} \right)^2}\left| {\begin{array}{*{20}{c}}
{q + r - \dfrac{{{p^2}}}{q}}&{\dfrac{{{p^2}}}{q}} \\\
{ - r - p + \dfrac{{{q^2}}}{p}}&{r + p}
\end{array}} \right|
Applying C1→C1+C2, we get
D = 2pq{\left( {p + q + r} \right)^2}\left| {\begin{array}{*{20}{c}}
{q + r - \dfrac{{{p^2}}}{q} + \dfrac{{{p^2}}}{q}}&{\dfrac{{{p^2}}}{q}} \\\
{ - r - p + \dfrac{{{q^2}}}{p} + r + p}&{r + p}
\end{array}} \right|
Simplify the above determinant, we get
D = 2pq{\left( {p + q + r} \right)^2}\left| {\begin{array}{*{20}{c}}
{q + r}&{\dfrac{{{p^2}}}{q}} \\\
{\dfrac{{{q^2}}}{p}}&{r + p}
\end{array}} \right|
We can see that now there are two rows and two columns in the above determinant. Let us expand this determinant. Therefore, we get
D=2pq(p+q+r)2[(q+r)(r+p)−(qp2)(pq2)]
Simplify the above expression, we get
D=2pq(p+q+r)2[qr+qp+r2+rp−pq] ⇒D=2pq(p+q+r)2[qr+r2+rp] ⇒D=2pq(p+q+r)2r[q+r+p] ⇒D=2pqr(p+q+r)3
Now we have s−a=p,s−b=q,s−c=r and p+q+r=s. Therefore, we get
D=2(s−a)(s−b)(s−c)s3 ⇒D=2s3(s−a)(s−b)(s−c)
Therefore, we get \left| {\begin{array}{*{20}{c}}
{{a^2}}&{{{\left( {s - a} \right)}^2}}&{{{\left( {s - a} \right)}^2}} \\\
{{{\left( {s - b} \right)}^2}}&{{b^2}}&{{{\left( {s - b} \right)}^2}} \\\
{{{\left( {s - c} \right)}^2}}&{{{\left( {s - c} \right)}^2}}&{{c^2}}
\end{array}} \right| = 2{s^3}\left( {s - a} \right)\left( {s - b} \right)\left( {s - c} \right).
Note: \left| {\begin{array}{*{20}{c}} {{a_1}}&{{a_2}}&{{a_3}} \\\ {{b_1}}&{{b_2}}&{{b_3}} \\\ {{c_1}}&{{c_2}}&{{c_3}} \end{array}} \right| is calculated as a1(b2c3−b3c2)−a2(b1c3−b3c1)+a3(b1c2−b2c1). We can perform row operations as well as column operations to convert the given determinant into simplest form.