Solveeit Logo

Question

Question: If 2(q-a) is the harmonic mean between (q-p) and (q-r) then the quantities (p-a), (q-a) and (r-a) ar...

If 2(q-a) is the harmonic mean between (q-p) and (q-r) then the quantities (p-a), (q-a) and (r-a) are in:

A

A.P.

B

G.P.

C

H.P.

D

None of these

Answer

G.P.

Explanation

Solution

The harmonic mean (HM) of two numbers A and B is given by H=2ABA+BH = \frac{2AB}{A+B}. Given that 2(qa)2(q-a) is the harmonic mean between (qp)(q-p) and (qr)(q-r), we have: 2(qa)=2(qp)(qr)(qp)+(qr)2(q-a) = \frac{2(q-p)(q-r)}{(q-p) + (q-r)} Dividing by 2: (qa)=(qp)(qr)(qp)+(qr)(q-a) = \frac{(q-p)(q-r)}{(q-p) + (q-r)} Let X=paX = p-a, Y=qaY = q-a, and Z=raZ = r-a. Then: qp=(qa)(pa)=YXq-p = (q-a) - (p-a) = Y - X qr=(qa)(ra)=YZq-r = (q-a) - (r-a) = Y - Z Substituting these into the equation: Y=(YX)(YZ)(YX)+(YZ)Y = \frac{(Y-X)(Y-Z)}{(Y-X) + (Y-Z)} Y[(YX)+(YZ)]=(YX)(YZ)Y[(Y-X) + (Y-Z)] = (Y-X)(Y-Z) Y(2YXZ)=Y2YZYX+XZY(2Y - X - Z) = Y^2 - YZ - YX + XZ 2Y2XYYZ=Y2YZYX+XZ2Y^2 - XY - YZ = Y^2 - YZ - YX + XZ Y2=XZY^2 = XZ This condition implies that X,Y,ZX, Y, Z are in Geometric Progression (G.P.).