Solveeit Logo

Question

Question: If \(2i\) and \(\alpha - i\beta(\alpha,\beta\text{real}),\) , then \(\left( \frac{3 - 4ix}{3 + 4ix} ...

If 2i2i and αiβ(α,βreal),\alpha - i\beta(\alpha,\beta\text{real}), , then (34ix3+4ix)=\left( \frac{3 - 4ix}{3 + 4ix} \right) =

A

xx

B

yy

C

(x+iy)(x + iy)

D

None of these

Answer

xx

Explanation

Solution

z4=11744iz^{4} = - 117 - 44i

=(1+ac+ib)(1+a+c+ib)(1+a+c)2+b2= \frac { ( 1 + a - c + i b ) ( 1 + a + c + i b ) } { ( 1 + a + c ) ^ { 2 } + b ^ { 2 } } z43z3+3z2+99z95=5z^{4} - 3z^{3} + 3z^{2} + 99z - 95 = 5

= z=34iz = 3 - 4i

(z3)2=16(z - 3)^{2} = - 16.