Solveeit Logo

Question

Question: If \(2\cos^{2}x\cos 2x = 0\)then \(x = (2n + 1)\frac{\pi}{2}\ \)...

If 2cos2xcos2x=02\cos^{2}x\cos 2x = 0then x=(2n+1)π2 x = (2n + 1)\frac{\pi}{2}\

A

x=(2n+1)π4x = (2n + 1)\frac{\pi}{4}

B

\therefore

C

(2n±1)π4(2n \pm 1)\frac{\pi}{4}

D

2tanx+1tan2x1+tan2x=tanx\frac{2\tan x + 1 - \tan^{2}x}{1 + \tan^{2}x} = \tan x

Answer

\therefore

Explanation

Solution

Eliminating sin(3x2)=2π3/2=4π3\sin\left( \frac{3x}{2} \right) = \frac{2\pi}{3/2} = \frac{4\pi}{3}, we get 3π3\pi 4π3\frac{4\pi}{3} (rejected)

12π12π12\pi 12\pi.