Solveeit Logo

Question

Question: If \((2\cos x - 1)(3 + 2\cos x) = 0\), then \(\cos x = \frac{1}{2}\text{ }\)...

If (2cosx1)(3+2cosx)=0(2\cos x - 1)(3 + 2\cos x) = 0, then cosx=12 \cos x = \frac{1}{2}\text{ }

A

cosx32\cos x \neq \frac{- 3}{2}

B

\Rightarrow x=2nπ±π3;{n=0ds fy,,x=π3,5π3n=1ds fy,,x=5π3}x = 2n\pi \pm \frac{\pi}{3};\left\{ \begin{aligned} & n = 0ds\ fy,,x = \frac{\pi}{3},\frac{5\pi}{3} \\ & n = 1ds\ fy,,x = \frac{5\pi}{3} \end{aligned} \right\}

C

81sin2x+81cos2x=3081^{\sin^{2}x} + 81^{\cos^{2}x} = 30

D

x=π6x = \frac{\pi}{6}

Answer

\Rightarrow x=2nπ±π3;{n=0ds fy,,x=π3,5π3n=1ds fy,,x=5π3}x = 2n\pi \pm \frac{\pi}{3};\left\{ \begin{aligned} & n = 0ds\ fy,,x = \frac{\pi}{3},\frac{5\pi}{3} \\ & n = 1ds\ fy,,x = \frac{5\pi}{3} \end{aligned} \right\}

Explanation

Solution

sinθ+cosθ=12\therefore\sin\theta + \cos\theta = \frac{1}{2}

For sin(θ+π4)=122\sin\left( \theta + \frac{\pi}{4} \right) = \frac{1}{2\sqrt{2}}

R1R1R3R_{1} \rightarrow R_{1} - R_{3}, we get R2R2R3R_{2} \rightarrow R_{2} - R_{3}.