Solveeit Logo

Question

Question: If \(2^{a_{1}}\), \(2^{a_{2}}\),\(2^{a_{3}}\)..... \(2^{a_{n}}\) are in G.P. Then \(\left| \begin{m...

If 2a12^{a_{1}}, 2a22^{a_{2}},2a32^{a_{3}}..... 2an2^{a_{n}} are in G.P. Then

a1a2a3an+1an+2an+3a2n+1a2n+2a2n+3\left| \begin{matrix} a_{1} & a_{2} & a_{3} \\ a_{n + 1} & a_{n + 2} & a_{n + 3} \\ a_{2n + 1} & a_{2n + 2} & a_{2n + 3} \end{matrix} \right| is equal to

A

2

B

23

C

0

D

None of these

Answer

0

Explanation

Solution

2a12^{a_{1}}, 2a22^{a_{2}},2a32^{a_{3}}..... are in G.P Ž a2 – a1 = a3 – a2 = a4 – a3 =..... Ž a1, a2, a3 ..... are in A.P.

Ž a2n+1 + a1 = 2an+1, a2 + a2n+2 = 2an+2, a3 + a2n+3 = 2an+3

Ž D = 12\frac { 1 } { 2 } a1a2a3000a2n+1a2n+2a2n+3\left| \begin{matrix} a_{1} & a_{2} & a_{3} \\ 0 & 0 & 0 \\ a_{2n + 1} & a_{2n + 2} & a_{2n + 3} \end{matrix} \right| = 0