Question
Question: If 27 cos<sup>3</sup>q sin<sup>5</sup>q = a sin 8q + b sin 6q + c cos 4q + d sin 2q then value of a ...
If 27 cos3q sin5q = a sin 8q + b sin 6q + c cos 4q + d sin 2q then value of a + b + c + d is-
A
5
B
–6
C
0
D
3
Answer
3
Explanation
Solution
Q (2 cos q)3 = (z+z1)3and
(2i sin q)5 = (z−z1)5
Ž 28 i cos3 q sin5 q = (z2−z21)3 (z−z1)2
= (z6−3z2+3z21−z61) (z2−2+z21)
= (z8−z81)– 2 (z6−z61) – (3 – 1)
(z4−z41)+6(z2−z21)
= (2i sin 8 q) – 2(2i sin 6q) – 2(2i sin 4q) + 6(2i sin 2q)
Ž 27 cos3q sin5q = sin 8q – 2sin 6q – 2sin 4q + 6 sin 2q
Here a = 1, b = –2, c = –2, d = 6
Ž a + b + c + d = 1 – 2 – 2 + 6 = 3.