Solveeit Logo

Question

Question: If \((2,6)\) is an interior point of the circle\(x^{2} + y^{2} - 8x - 12y + p = 0\) and the circle n...

If (2,6)(2,6) is an interior point of the circlex2+y28x12y+p=0x^{2} + y^{2} - 8x - 12y + p = 0 and the circle neither cuts nor touches any one of the axes of co-ordinates then

A

p∈(36,47)

B

p ∈(16, 47)

C

p∈(16, 36)

D

None of these

Answer

p ∈(16, 47)

Explanation

Solution

We have x2+y28x12y+p=0x^{2} + y^{2} - 8x - 12y + p = 0 then centre and radius of the circle are (4,6) and (52p)\sqrt{(52 - p)} respectively.

\becauseCircle neither cuts nor touches any one of the axes of coordinates then

xx -coordinates of centre > radius i.e.,

4>52p4 > \sqrt{52 - p}

p>36p > ⥂ 36 ……………..(1)

& y-coordinate of centre > radius

6>52p6 > \sqrt{52 - p},

p>16p > ⥂ 16 …………….(2)

\therefore D is interior point of the circle then

CD < radius 5<52p\sqrt{5} < \sqrt{52 - p}

p<47p < 47 …………(3)

from (1), (2) & (3) we obtain

36<p<4736 < p < 47

\thereforep ∈(36, 47).