Question
Question: If \((2,6)\) is an interior point of the circle\(x^{2} + y^{2} - 8x - 12y + p = 0\) and the circle n...
If (2,6) is an interior point of the circlex2+y2−8x−12y+p=0 and the circle neither cuts nor touches any one of the axes of co-ordinates then
A
p∈(36,47)
B
p ∈(16, 47)
C
p∈(16, 36)
D
None of these
Answer
p ∈(16, 47)
Explanation
Solution
We have x2+y2−8x−12y+p=0 then centre and radius of the circle are (4,6) and (52−p) respectively.
∵Circle neither cuts nor touches any one of the axes of coordinates then
x−coordinates of centre > radius i.e.,
4>52−p
⇒ p>⥂36 ……………..(1)
& y-coordinate of centre > radius
6>52−p,
⇒ p>⥂16 …………….(2)
∴ D is interior point of the circle then
CD < radius 5<52−p
⇒ p<47 …………(3)
from (1), (2) & (3) we obtain
36<p<47
∴p ∈(36, 47).
