Solveeit Logo

Question

Quantitative Aptitude Question on Number Systems

If 25(3a - 2b) = 5(b - a) = 52 and 1a+1b+1c=1335\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{13}{35}, then find the value of ab - c.

A

1

B

0

C

-1

D

-2

Answer

0

Explanation

Solution

25(3a-2b) = 5(b-a) = 52
52(3a-2b) = 5b-a = 52
56a-4b = 5b-a = 52
56a-4b = 52
6a - 4b = 2
3a - 2b = 1 ....... (1)
5b-a = 52
b - a = 2
2b - 2a = 4 ...... (2)
From (1) and (2) :
3a - 2a - 4 = 1
a = 5
b = 7
Now,
1a+1b+1c=1335\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{13}{35}
15+17+1c=1335\frac{1}{5}+\frac{1}{7}+\frac{1}{c}=\frac{13}{35}
1c=13351517=137535\frac{1}{c}=\frac{13}{35}-\frac{1}{5}-\frac{1}{7}=\frac{13-7-5}{35}
c = 35
Value of ab - c
= 5 * 7 - 35
= 35 - 35
= 0
So, the correct option is (B) : 0.