Solveeit Logo

Question

Question: If 2010 is a root of \[{x^2}\left( {1 - pq} \right) - x\left( {{p^2} + {q^2}} \right) - \left( {1 + ...

If 2010 is a root of x2(1pq)x(p2+q2)(1+pq)=0{x^2}\left( {1 - pq} \right) - x\left( {{p^2} + {q^2}} \right) - \left( {1 + pq} \right) = 0 and 2010 harmonic means are inserted between pp and qq the value of h1hnpq(pq)\dfrac{{h_1 - h_n}}{{pq\left( {p - q} \right)}} is
A) 12\dfrac{1}{2}
B) 4
C) 1
D) 2

Explanation

Solution

First we will let the given root be equal to n then we will replace xx by nn in the given equation and get a certain value. Now since 2010 harmonic means are inserted between pp and qq we will assume them as h1,h2,....hnh_1,h_2,....h_n and then convert them in A.P. Then use certain formulas of A.P to get the desired value.
The identity used here is :
a2b2=(a+b)(ab){a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)

Complete step by step solution:
The given equation is:-
x2(1pq)x(p2+q2)(1+pq)=0{x^2}\left( {1 - pq} \right) - x\left( {{p^2} + {q^2}} \right) - \left( {1 + pq} \right) = 0
Let the given root to be nn
Therefore,
n=2010n = 2010
Now since n is a root of given equation therefore replacing xx by nn in the given equation we get:
n2(1pq)n(p2+q2)(1+pq)=0{n^2}\left( {1 - pq} \right) - n\left( {{p^2} + {q^2}} \right) - \left( {1 + pq} \right) = 0
Solving it further we get:

n2n2pqnp2nq21pq=0 n21=pq(n2+1)+n(p2+q2).................(1) \Rightarrow {n^2} - {n^2}pq - n{p^2} - n{q^2} - 1 - pq = 0 \\\ \Rightarrow {n^2} - 1 = pq\left( {{n^2} + 1} \right) + n\left( {{p^2} + {q^2}} \right).................\left( 1 \right) \\\

Now since 2010 harmonic means are inserted between p and q therefore let the harmonic means be:
h1,h2,...........hnh_1,h_2,...........h_n
Hence the resulting harmonic series is:
p,h1,h2,...........hn,qp,h_1,h_2,...........h_n,q
Now converting this series into A.P. we get:-
1p,1h1,1h2,...........1hn,1q\Rightarrow \dfrac{1}{p},\dfrac{1}{{h_1}},\dfrac{1}{{h_2}},...........\dfrac{1}{{h_n}},\dfrac{1}{q}
Now as we know that the formula for last term of an A.P is :-
Tn=a+(N1)dTn = a + \left( {N - 1} \right)d
Applying this formula for above A.P we get:
Here, N=n+2N = n + 2 hence

1q=1p+(n+21)d 1q=1p+(n+1)d \Rightarrow \dfrac{1}{q} = \dfrac{1}{p} + \left( {n + 2 - 1} \right)d \\\ \Rightarrow \dfrac{1}{q} = \dfrac{1}{p} + \left( {n + 1} \right)d \\\

Solving for the value of d we get:-

(n+1)d=1q1p (n+1)d=pqpq d=pqpq(n+1) \Rightarrow \left( {n + 1} \right)d = \dfrac{1}{q} - \dfrac{1}{p} \\\ \Rightarrow \left( {n + 1} \right)d = \dfrac{{p - q}}{{pq}} \\\ \Rightarrow d = \dfrac{{p - q}}{{pq\left( {n + 1} \right)}} \\\

Now since is the second term of the above A.P therefore,

1h1=1p+(21)d 1h1=1p+d \Rightarrow \dfrac{1}{{h_1}} = \dfrac{1}{p} + \left( {2 - 1} \right)d \\\ \Rightarrow \dfrac{1}{{h_1}} = \dfrac{1}{p} + d \\\

Putting the value of d we get:-

1h1=1p+pqpq(n+1) 1h1=q(n+1)+pqpq(n+1) 1h1=qn+ppq(n+1) h1=pq(n+1)qn+p \Rightarrow \dfrac{1}{{h_1}} = \dfrac{1}{p} + \dfrac{{p - q}}{{pq\left( {n + 1} \right)}} \\\ \Rightarrow \dfrac{1}{{h_1}} = \dfrac{{q\left( {n + 1} \right) + p - q}}{{pq\left( {n + 1} \right)}} \\\ \Rightarrow \dfrac{1}{{h_1}} = \dfrac{{qn + p}}{{pq\left( {n + 1} \right)}} \\\ \Rightarrow h_1 = \dfrac{{pq\left( {n + 1} \right)}}{{qn + p}} \\\

Also, since 1hn\dfrac{1}{{h_n}} is the second last term of the above A.P therefore,
1hn=1qd\Rightarrow \dfrac{1}{{h_n}} = \dfrac{1}{q} - d
Putting the value of d we get:-

1hn=1qpqpq(n+1) 1hn=p(n+1)p+qpq(n+1) 1hn=pn+qpq(n+1) hn=pq(n+1)pn+q \Rightarrow \dfrac{1}{{h_n}} = \dfrac{1}{q} - \dfrac{{p - q}}{{pq\left( {n + 1} \right)}} \\\ \Rightarrow \dfrac{1}{{h_n}} = \dfrac{{p\left( {n + 1} \right) - p + q}}{{pq\left( {n + 1} \right)}} \\\ \Rightarrow \dfrac{1}{{h_n}} = \dfrac{{pn + q}}{{pq\left( {n + 1} \right)}} \\\ \Rightarrow h_n = \dfrac{{pq\left( {n + 1} \right)}}{{pn + q}} \\\

Now evaluating the value of h1hnh_1 - h_n we get:-

h1hn=pq(n+1)qn+ppq(n+1)pn+q h1hn=pq(n+1)(pn+qqnp)(qn+p)(pn+q) h1hn=pq(n+1)(n(pq)1(pq))(qn+p)(pn+q) h1hn=pq(n+1)(n1)(pq)n2pq+nq2+np2+pq \Rightarrow h_1 - h_n = \dfrac{{pq\left( {n + 1} \right)}}{{qn + p}} - \dfrac{{pq\left( {n + 1} \right)}}{{pn + q}} \\\ \Rightarrow h_1 - h_n = \dfrac{{pq\left( {n + 1} \right)\left( {pn + q - qn - p} \right)}}{{\left( {qn + p} \right)\left( {pn + q} \right)}} \\\ \Rightarrow h_1 - h_n = \dfrac{{pq\left( {n + 1} \right)\left( {n\left( {p - q} \right) - 1\left( {p - q} \right)} \right)}}{{\left( {qn + p} \right)\left( {pn + q} \right)}} \\\ \Rightarrow h_1 - h_n = \dfrac{{pq\left( {n + 1} \right)\left( {n - 1} \right)\left( {p - q} \right)}}{{{n^2}pq + n{q^2} + n{p^2} + pq}} \\\

As we know that:
a2b2=(a+b)(ab)\Rightarrow {a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)
Therefore applying this formula we get:
h1hn=pq(n21)(pq)(n2+1)pq+n(q2+p2)\Rightarrow h_1 - h_n = \dfrac{{pq\left( {{n^2} - 1} \right)\left( {p - q} \right)}}{{({n^2} + 1)pq + n({q^2} + {p^2})}}
Now putting the value of (n21)\left( {{n^2} - 1} \right) from equation 1 we get:-
h1hn=pq[pq(n2+1)+n(p2+q2)](pq)(n2+1)pq+n(q2+p2)\Rightarrow h_1 - h_n = \dfrac{{pq\left[ {pq\left( {{n^2} + 1} \right) + n\left( {{p^2} + {q^2}} \right)} \right]\left( {p - q} \right)}}{{({n^2} + 1)pq + n({q^2} + {p^2})}}
Now evaluating the value of h1hnpq(pq)\dfrac{{h_1 - h_n}}{{pq\left( {p - q} \right)}} we get:-

h1hnpq(pq)=pq[pq(n2+1)+n(p2+q2)](pq)(n2+1)pq+n(q2+p2)pq(pq) h1hnpq(pq)=[pq(n2+1)+n(p2+q2)](n2+1)pq+n(q2+p2) h1hnpq(pq)=1 \Rightarrow \dfrac{{h_1 - h_n}}{{pq\left( {p - q} \right)}} = \dfrac{{pq\left[ {pq\left( {{n^2} + 1} \right) + n\left( {{p^2} + {q^2}} \right)} \right]\left( {p - q} \right)}}{{({n^2} + 1)pq + n({q^2} + {p^2})pq\left( {p - q} \right)}} \\\ \Rightarrow \dfrac{{h_1 - h_n}}{{pq\left( {p - q} \right)}} = \dfrac{{\left[ {pq\left( {{n^2} + 1} \right) + n\left( {{p^2} + {q^2}} \right)} \right]}}{{({n^2} + 1)pq + n({q^2} + {p^2})}} \\\ \Rightarrow \dfrac{{h_1 - h_n}}{{pq\left( {p - q} \right)}} = 1 \\\

\therefore Hence the option C is correct.

Note:
Harmonic terms are the reciprocal of the terms that are in A.P.
Also, we do not have to use the exact value of the root of the given equation to get the desired answer.
The nth term of an A.P. is given by:
Tn=a+(N1)dTn = a + \left( {N - 1} \right)d where N is the number of terms of A.P.