Solveeit Logo

Question

Question: If \(-2{{y}^{2}}-2+{{x}^{2}}=0\) then find \(\dfrac{{{d}^{2}}y}{d{{x}^{2}}}\) at the point (-2 , 1) ...

If 2y22+x2=0-2{{y}^{2}}-2+{{x}^{2}}=0 then find d2ydx2\dfrac{{{d}^{2}}y}{d{{x}^{2}}} at the point (-2 , 1) in simplest form.

Explanation

Solution

The d2ydx2\dfrac{{{d}^{2}}y}{d{{x}^{2}}} means the second derivative of the function y with respect to x. Therefore, differentiate the given equation twice and with the help of suitable changes find the expression for d2ydx2\dfrac{{{d}^{2}}y}{d{{x}^{2}}}. Then find its value at (-2 , 1).

Formula used:
ddxxn=nxn1\dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}}

Complete step by step answer:
The given equation in the question is 2y22+x2=0-2{{y}^{2}}-2+{{x}^{2}}=0 ….. (i),
which has two variables, x and y. Let us assume that the variable y is a function that is dependent on the variable x.
Let us understand what is meant by d2ydx2\dfrac{{{d}^{2}}y}{d{{x}^{2}}}. d2ydx2\dfrac{{{d}^{2}}y}{d{{x}^{2}}} is the second derivative of the function y with respect to x.
Derivative of a function with respect to some variable is defined as the rate of change in that function with respect to the change in the independent variable.In other words, it tells us how the function y changes when the variable x changes. Let us differentiate each term of the equation (i) with respect to x.

With this we get that ddx(2y2)+ddx(2)+ddx(x2)=ddx(0)\dfrac{d}{dx}\left( -2{{y}^{2}} \right)+\dfrac{d}{dx}\left( -2 \right)+\dfrac{d}{dx}\left( {{x}^{2}} \right)=\dfrac{d}{dx}(0) …. (i)
Derivative of a constant is zero. Therefore, ddx(2)=ddx(0)=0\dfrac{d}{dx}(-2)=\dfrac{d}{dx}(0)=0.
And ddx(x2)=2x\dfrac{d}{dx}\left( {{x}^{2}} \right)=2x
By using the chain rule we get ddx(2y2)=2(2y)dydx=4ydydx\dfrac{d}{dx}\left( -2{{y}^{2}} \right)=-2\left( 2y \right)\dfrac{dy}{dx}=-4y\dfrac{dy}{dx}
Substitute all the found values in equation (i).
4ydydx+2x=0\Rightarrow -4y\dfrac{dy}{dx}+2x=0
2ydydx=x\Rightarrow 2y\dfrac{dy}{dx}=x …. (ii)

Now, let us differentiate the above equation with respect to x again to find the expression for the second derivative of y. Then,
ddx(2ydydx)=ddxx\Rightarrow \dfrac{d}{dx}\left( 2y\dfrac{dy}{dx} \right)=\dfrac{d}{dx}x ….. (iii)
By using product rule we get that ddx(2ydydx)=ddx(2y)dydx+(2y)ddx(dydx)\dfrac{d}{dx}\left( 2y\dfrac{dy}{dx} \right)=\dfrac{d}{dx}(2y)\dfrac{dy}{dx}+(2y)\dfrac{d}{dx}\left( \dfrac{dy}{dx} \right)
ddx(2ydydx)=2dydx.dydx+(2y)(d2ydx2)\Rightarrow \dfrac{d}{dx}\left( 2y\dfrac{dy}{dx} \right)=2\dfrac{dy}{dx}.\dfrac{dy}{dx}+(2y)\left( \dfrac{{{d}^{2}}y}{d{{x}^{2}}} \right)
ddx(2ydydx)=2(dydx)2+2y(d2ydx2)\Rightarrow \dfrac{d}{dx}\left( 2y\dfrac{dy}{dx} \right)=2{{\left( \dfrac{dy}{dx} \right)}^{2}}+2y\left( \dfrac{{{d}^{2}}y}{d{{x}^{2}}} \right)
And ddxx=1\dfrac{d}{dx}x=1
Substitute these values equation (iii)
2(dydx)2+2y(d2ydx2)=1\Rightarrow 2{{\left( \dfrac{dy}{dx} \right)}^{2}}+2y\left( \dfrac{{{d}^{2}}y}{d{{x}^{2}}} \right)=1 …. (iv)

Now, from (ii) we get that dydx=x2y\dfrac{dy}{dx}=\dfrac{x}{2y}
Substitute this in (iv)
2(x2y)2+2y(d2ydx2)=1\Rightarrow 2{{\left( \dfrac{x}{2y} \right)}^{2}}+2y\left( \dfrac{{{d}^{2}}y}{d{{x}^{2}}} \right)=1
2(x24y2)+2y(d2ydx2)=1\Rightarrow 2\left( \dfrac{{{x}^{2}}}{4{{y}^{2}}} \right)+2y\left( \dfrac{{{d}^{2}}y}{d{{x}^{2}}} \right)=1
On simplifying we get 2y(d2ydx2)=1x22y2=2y2x22y22y\left( \dfrac{{{d}^{2}}y}{d{{x}^{2}}} \right)=1-\dfrac{{{x}^{2}}}{2{{y}^{2}}}=\dfrac{2{{y}^{2}}-{{x}^{2}}}{2{{y}^{2}}}
d2ydx2=2y2x22y2×12y=2y2x24y3\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{2{{y}^{2}}-{{x}^{2}}}{2{{y}^{2}}}\times \dfrac{1}{2y}=\dfrac{2{{y}^{2}}-{{x}^{2}}}{4{{y}^{3}}}
Now, substitute x=2,y=1x=-2,y=1
d2ydx2=2(1)2(2)24(1)3\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{2{{(1)}^{2}}-{{(-2)}^{2}}}{4{{(1)}^{3}}}
d2ydx2=244 d2ydx2=12\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{2-4}{4}\\\ \therefore\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-\dfrac{1}{2}

Therefore, the value of d2ydx2\dfrac{{{d}^{2}}y}{d{{x}^{2}}} at (-2,1) is 12-\dfrac{1}{2}.

Note: Sometimes students misunderstand the means of dydx\dfrac{dy}{dx}. It is a notation for derivative or rate of change in y with respect to the change in x and not just a ratio between ‘dy’ and ‘dx’.Do not misunderstand that dxdy=1(dydx)\dfrac{dx}{dy}=\dfrac{1}{\left( \dfrac{dy}{dx} \right)}. The derivative of x with respect to y will have a different meaning.