Solveeit Logo

Question

Mathematics Question on Differentiability

If 2x+2y=2x+y2^x+2^y = 2^{x+y}, then dydx\frac {dy}{dx} is

A

2yx2^{y-x}

B

2yx-2^{y-x}

C

2xy2^{x-y}

D

2y12x1\frac {2^y-1}{2^x-1}

Answer

2yx-2^{y-x}

Explanation

Solution

2x+2y=2(x+y)..(1)2^{x}+2^{y}=2^{(x+y)} \ldots . .(1)
Differentiating both sides w.r.t. xx, we get
2xln2+2yyln2=2(x+y)ln2(1+y)2^{x} \ln 2+2^{y} y' \ln 2=2^{(x+y)} \ln 2\left(1+y'\right)
2x+2yy=2(x+y)(1+y)\Rightarrow 2^{x}+2^{y} y'=2^{(x+y)}\left(1+y'\right)
2x+2yy=2(x+y)+2(x+y)y\Rightarrow 2^{x}+2^{y} \cdot y'=2^{(x+y)}+2^{(x+y)} \cdot y'
2x2(x+y)=y(2(x+y)2y)\Rightarrow 2^{x}-2^{(x+y)}=y'\left(2^{(x+y)}-2^{y}\right)
2x2x2y=y(2x+2y2y)[\Rightarrow 2^{x}-2^{x}-2^{y}=y'\left(2^{x}+2^{y}-2^{y}\right)[ From eqn. (1)](1)]
2y=y2x\Rightarrow-2^{y}=y'2^{x}
y=dy/dx=2yx\Rightarrow y'=d y / d x=-2^{y-x}