Solveeit Logo

Question

Question: If\[{2^{\text{x}}} + {2^{\text{y}}} = {2^{{\text{x + y}}}}\], then \(\dfrac{{{\text{dy}}}}{{{\text{d...

If2x+2y=2x + y{2^{\text{x}}} + {2^{\text{y}}} = {2^{{\text{x + y}}}}, then dydx\dfrac{{{\text{dy}}}}{{{\text{dx}}}}is equal to
A. 2x+2y2x2y B. 2x+2y1+2x + y C. 2x - y(2y112x) D. 2x + y2x2y  {\text{A}}{\text{. }}\dfrac{{{{\text{2}}^{\text{x}}} + {2^{\text{y}}}}}{{{2^{\text{x}}} - {2^{\text{y}}}}} \\\ {\text{B}}{\text{. }}\dfrac{{{{\text{2}}^{\text{x}}} + {2^{\text{y}}}}}{{1 + {2^{{\text{x + y}}}}}} \\\ {\text{C}}{\text{. }}{{\text{2}}^{{\text{x - y}}}}\left( {\dfrac{{{{\text{2}}^{\text{y}}} - 1}}{{1 - {2^{\text{x}}}}}} \right) \\\ {\text{D}}{\text{. }}\dfrac{{{{\text{2}}^{{\text{x + y}}}} - {2^{\text{x}}}}}{{{2^{\text{y}}}}} \\\

Explanation

Solution

Hint: In order to find the value ofdydx\dfrac{{{\text{dy}}}}{{{\text{dx}}}}, we differentiate the given equation with respect to x and bring all dydx\dfrac{{{\text{dy}}}}{{{\text{dx}}}}terms to the left hand side of the equation. (ddxax=axloga)\left( {\dfrac{{\text{d}}}{{{\text{dx}}}}{{\text{a}}^{\text{x}}} = {{\text{a}}^{\text{x}}}{\text{loga}}} \right).

Complete step-by-step answer:

Given Data, 2x+2y=2(x + y){2^{\text{x}}} + {2^{\text{y}}} = {2^{{\text{(x + y)}}}}
Differentiating the given equation w.r.t x, we get
2xlog2+2ylog2dydx=2(x + y)log2ddx(x + y){2^{\text{x}}}{\text{log2}} + {2^{\text{y}}}{\text{log2}}\dfrac{{{\text{dy}}}}{{{\text{dx}}}} = {2^{{\text{(x + y)}}}}{\text{log2}}\dfrac{{{\text{d}}}}{{{\text{dx}}}}\left( {{\text{x + y}}} \right) ___________________ ddxay=aylogaddx(y)\dfrac{{\text{d}}}{{{\text{dx}}}}{{\text{a}}^{\text{y}}} = {{\text{a}}^{\text{y}}}{\text{loga}}\dfrac{{\text{d}}}{{{\text{dx}}}}{\text{(y)}}
2xlog2+2ylog2dydx=2(x + y)log2(1 + dydx)\Rightarrow {2^{\text{x}}}{\text{log2}} + {2^{\text{y}}}{\text{log2}}\dfrac{{{\text{dy}}}}{{{\text{dx}}}} = {2^{{\text{(x + y)}}}}{\text{log2}}\left( {{\text{1 + }}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}} \right)
Bringing all dydx\dfrac{{{\text{dy}}}}{{{\text{dx}}}}terms to the left hand side, we get

(2y2(x+y))dydx=2x + y2x dydx=2(x + y)2x2y2x + y=2x(2y1)2y(1 - 2x)=2(x - y)(2y1)1 - 2x  \Rightarrow \left( {{{\text{2}}^{\text{y}}} - {{\text{2}}^{{\text{(x+y)}}}}} \right)\dfrac{{{\text{dy}}}}{{{\text{dx}}}} = {{\text{2}}^{{\text{x + y}}}} - {{\text{2}}^{\text{x}}} \\\ \Rightarrow \dfrac{{{\text{dy}}}}{{{\text{dx}}}} = \dfrac{{{{\text{2}}^{{\text{(x + y)}}}} - {{\text{2}}^{\text{x}}}}}{{{{\text{2}}^{\text{y}}} - {{\text{2}}^{{\text{x + y}}}}}} = \dfrac{{{{\text{2}}^{\text{x}}}\left( {{{\text{2}}^{\text{y}}} - 1} \right)}}{{{{\text{2}}^{\text{y}}}\left( {{\text{1 - }}{{\text{2}}^{\text{x}}}} \right)}} = \dfrac{{{{\text{2}}^{{\text{(x - y)}}}}\left( {{{\text{2}}^{\text{y}}} - 1} \right)}}{{{\text{1 - }}{{\text{2}}^{\text{x}}}}} \\\
Hence Option C is the correct answer.

Note: In order to solve questions of this type the key is to differentiate the given equation and bring all the required terms to one side of the equation to easily find its answer. Basic knowledge of differentiations of common terms is necessary in solving equations like these.