Question
Question: If \( 2\tan {10^0} + \tan {50^0} = 2x,\,\tan {20^0} + \tan {50^0} = 2y,\,2\tan {10^0} + \tan {70^0} ...
If 2tan100+tan500=2x,tan200+tan500=2y,2tan100+tan700=2wandtan200+tan700=2z then which of the following is/are true. Solve given equations with each other to derive relationships between variables x, y, z and w to discuss given options.
(A) z>w>y>x
(B) w=x+y
(C) 2y=z
(D) z+x=w+y
Solution
Hint : In given problems four equations are given first we see common terms in equations and then group them together and solve them using method of elimination and finally obtaining relation between variable x, y, z and w to get required correct options.
2.sinA.cosB=sin(A+B)+sin(A−B),2cosA.sinB=sin(A+B)−sin(A−B),sin2A=2.sinA.cosB
sin3A=3sinA−4sin3A,sin(π−A)=sinA
Complete step by step solution:
For convenience we mark given equations as (i), (ii), (iii) and (iv). Therefore we have
2tan100+tan500=2x.......(i)
tan200+tan500=2y.........(ii)
2tan100+tan700=2w.......(iii) tan200+tan700=2z..........(iv)
Subtracting (i) from (ii) we have,
2y−2x=(tan200+tan500)−(2tan100+tan500) ⇒2y−2x=tan200+tan500−2tan100−tan500 ⇒2y−2x=tan200−2tan100
Converting the right hand side of the above equation into a basic trigonometric equation.
i.e. tan200=cos200sin200,tan100=cos100sin100 using these in above equation we have,
2y−2x=cos200sin200−2(cos100sin100)
On taking l.c.m. of right hand side
⇒2y−2x=cos200cos100(sin200cos100−2.cos200sin100)
To make the formula multiply and divide right hand side by 2 .
2y−2x=2cos200cos1002.sin200cos100−4.cos200sin100 or
2y−2x=2cos200cos1002.sin200cos100−2(2cos200sin100)
Using identities 2sinA.cosB=sin(A+B)+sin(A−B)and2cosA.sinB=sin(A+B)−sin(A−B)
2y−2x=2cos200.cos100(sin300+sin100)−2(sin300−sin100)
⇒2y−2x=2cos200cos100sin300+sin100−2.sin300+2.sin100
⇒2y−2x=2cos200cos1003.sin100−sin300
Writing
sin300=sin3(100) sin300=3sin(100)−4sin3(100) or
3.sin100=sin300+4sin3100
Using the value of 3.sin100 in the above equation. We have,
2y−2x=2.cos200.cos100sin300+4sin3100−sin300
⇒2y−2x=2cos200.cos1004sin3100 ⇒2y−2x=cos200.cos1002.sin3100
⇒y−x=cos200.cos100sin3100
All trigonometric ratios involved in the right hand side of the above equation lie in the first quadrant.
sin100>0,cos200>0andcos100>0
Hence, we say that y−x>0 or
y>x …………………..(A)
Now, subtracting equation (iv) from (iii) we have
2w−2z=(2.tan100+tan700)−(tan200+tan700)
⇒2w−2z=2.tan100+tan700−tan200−tan700 ⇒2w−2z=2tan100−tan200
Converting the right hand side of the above equation into a basic trigonometric equation.
i.e. tan200=cos200sin200,tan100=cos100sin100 using these in above equation we have
2w−2z=2(cos100sin100)−(cos200sin200)
On taking l.c.m. of right hand side
2w−2z=cos100.cos2002.cos200sin100−sin200.cos100
To make the formula multiply and divide right hand side by 2 .
2w−2z=2.cos100.cos2004.cos200sin100−2.sin200.cos100 or
2w−2z=2.cos100.cos2002(2.cos200sin100)−(2.sin200.cos100)
Using identities 2sinA.cosB=sin(A+B)+sin(A−B)and2cosA.sinB=sin(A+B)−sin(A−B)
2w−2z=2.cos100cos2002(sin300−sin100)−(sin300+sin100)
⇒2w−2z=2.cos100cos2002.sin300−2.sin100−sin300−sin100
⇒2w−2z=2.cos100cos200sin300−3sin100
Writing
sin300=sin3(100) sin300=3sin(100)−4sin3(100)
Using, value of sin300 in the above equation. We have,
2w−2z=2.cos100.cos2003.sin100−4.sin3100−3.sin100
⇒2w−2z=2.cos100.cos200−4.sin3100⇒2w−2z=cos100.cos200−2.sin3100 ⇒z−w=cos100.cos200sin3100
All trigonometric ratios involved in the right hand side of the above equation lies in the first quadrant.
sin100>0,cos200>0andcos100>0
Hence, we say that y−x>0 or
z>w …………………..(B)
Now, subtracting (ii) from (iii) we have
2w−2y=(2tan100+tan700)−(tan200+tan500)
⇒2w−2y=2x ⇒w−y=x
Or we can write
w=x+y ……(C)
⇒w>y …….(D)
Then from equations (A), (B) and (D) we have
z>w>y>x
Therefore, option (A) is the correct option.
Now, we will discuss others options also,
From equation (C) derived above we have
w=x+y
Hence, option (B) is also correct.
To discuss third option we consider
2y−z=tan200+tan500−21tan200−21tan700
⇒2y−z=21tan200+tan500−21tan700 ⇒2y−z=21(tan200+2tan500−tan700)
⇒2y−z=21(cos200cos500sin700−cos500cos700sin200)
⇒2y−z=21cos200.cos500.cos700(sin700cos700−sin200.cos200)
Multiply and divide by 2 on the right hand side of the above equation.
2y−z=41.cos200.cos500cos7002.sin700sin700−2sin200cos200
⇒2y−z=41.cos200.cos500.cos700sin1400−sin400
⇒2y−z=41.cos200.cos500cos700sin400−sin400
⇒2y−z=0 ⇒2y=z
Hence, from above we see that option (C) is also correct.
Now, for fourth option we see that
w=x+y and w>y
Hence, z+x=w+y is not possible.
Therefore, option (D) is incorrect.
Hence, from above we see that option (A), (B) and (C) all three are correct options.
So, the correct answer is “Option A ,B AND C”.
Note : When a number of equations are given in a problem first we group them having common terms and then using appropriate formulas to solve them or to drive a relation between given variables. This can be only done by choosing the right grouping of equations.