Solveeit Logo

Question

Question: If \(2{{\tan }^{-1}}\left( \cos x \right)={{\tan }^{-1}}\left( 2\csc x \right)\), then the value of ...

If 2tan1(cosx)=tan1(2cscx)2{{\tan }^{-1}}\left( \cos x \right)={{\tan }^{-1}}\left( 2\csc x \right), then the value of xx is
(a) 3π4\dfrac{3\pi }{4}
(b) π4\dfrac{\pi }{4}
(c) π3\dfrac{\pi }{3}
(d) none of these

Explanation

Solution

Hint: In inverse trigonometric functions, we have a formula using which we can add two tan1{{\tan }^{-1}} functions. The formula is, tan1a+tan1b=tan1(a+b1ab){{\tan }^{-1}}a+{{\tan }^{-1}}b={{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right).

Before proceeding with the question, we must know the formulas that are required to solve this question. In inverse trigonometric functions, we have a formula,
tan1a+tan1b=tan1(a+b1ab).............(1){{\tan }^{-1}}a+{{\tan }^{-1}}b={{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right).............\left( 1 \right)
Also, in trigonometric functions, we have a formula,
cscx=1sinx.............(2)\csc x=\dfrac{1}{\sin x}.............\left( 2 \right)
In this question, we have to solve the equation 2tan1(cosx)=tan1(2cscx)2{{\tan }^{-1}}\left( \cos x \right)={{\tan }^{-1}}\left( 2\csc x \right).
tan1(cosx)+tan1(cosx)=tan1(2cscx)...........(3)\Rightarrow {{\tan }^{-1}}\left( \cos x \right)+{{\tan }^{-1}}\left( \cos x \right)={{\tan }^{-1}}\left( 2\csc x \right)...........\left( 3 \right)
Using equation (1)\left( 1 \right) by substituting a=cosxa=\cos x and b=cosxb=\cos x from equation (3)\left( 3 \right), we get,
tan1(cosx+cosx1cosxcosx)=tan1(2cscx){{\tan }^{-1}}\left( \dfrac{\cos x+\cos x}{1-\cos x\cos x} \right)={{\tan }^{-1}}\left( 2\csc x \right)
tan1(2cosx1cos2x)=tan1(2cscx)............(4)\Rightarrow {{\tan }^{-1}}\left( \dfrac{2\cos x}{1-{{\cos }^{2}}x} \right)={{\tan }^{-1}}\left( 2\csc x \right)............\left( 4 \right)
Also, in trigonometric functions, we have an identity,
sin2x+cos2x=1..............(5){{\sin }^{2}}x+{{\cos }^{2}}x=1..............\left( 5 \right)
From equation (5)\left( 5 \right), we can also write,
1cos2x=sin2x.................(6)1-{{\cos }^{2}}x={{\sin }^{2}}x.................\left( 6 \right)
Substituting 1cos2x=sin2x1-{{\cos }^{2}}x={{\sin }^{2}}x from equation (6)\left( 6 \right) in equation (4)\left( 4 \right), we get,
tan1(2cosxsin2x)=tan1(2cscx).............(7)\Rightarrow {{\tan }^{-1}}\left( \dfrac{2\cos x}{{{\sin }^{2}}x} \right)={{\tan }^{-1}}\left( 2\csc x \right).............\left( 7 \right)
Since in equation (7)\left( 7 \right), we have tan1{{\tan }^{-1}} on both sides of the equality.
Hence, we can now equate the arguments of tan1{{\tan }^{-1}} function in equation (7)\left( 7 \right).
2cosxsin2x=2cscx..................(8)\Rightarrow \dfrac{2\cos x}{{{\sin }^{2}}x}=2\csc x..................\left( 8 \right)
From equation (2)\left( 2 \right), we have cscx=1sinx\csc x=\dfrac{1}{\sin x}. Substituting cscx=1sinx\csc x=\dfrac{1}{\sin x} from equation (2)\left( 2 \right) in equation (8)\left( 8 \right), we get,
2cosxsin2x=2sinx............(9)\dfrac{2\cos x}{{{\sin }^{2}}x}=\dfrac{2}{\sin x}............\left( 9 \right)
Cancelling 22 and sinx\sin x on both the sides of equality in equation (9)\left( 9 \right), we get,
cosxsinx=1 cosx=sinx \begin{aligned} & \dfrac{\cos x}{\sin x}=1 \\\ & \Rightarrow \cos x=\sin x \\\ \end{aligned}
Since, cosx\cos x is equal to sinx\sin x for x=π4x=\dfrac{\pi }{4}, therefore the answer is x=π4x=\dfrac{\pi }{4}.
Hence the answer is option (b).

Note: There can be more than one answer for this question. Since we had to solve the equation cosx=sinx\cos x=\sin x in the final step, we found it’s solution as x=π4x=\dfrac{\pi }{4}. But we must know that cosx=sinx\cos x=\sin x also for x=5π4,9π4,13π4......x=\dfrac{5\pi }{4},\dfrac{9\pi }{4},\dfrac{13\pi }{4}....... So, we must check for all the other options since there can be more than one option correct in a question. In the options of this question, there is only one option which is satisfying the equation cosx=sinx\cos x=\sin x. That is why we have marked only a single option as a correct option in this question.