Solveeit Logo

Question

Mathematics Question on Inverse Trigonometric Functions

If 2tan1(cosx)=tan1(2cosecx) 2 \,tan^{-1} (cos\,x) = tan^{-1} (2 \,cosec\,x) then sinx+cosxsin\,x + cos\,x is equal to

A

222 \sqrt2

B

2\sqrt2

C

12\frac {1}{\sqrt2}

D

12\frac{1}{2}

Answer

2\sqrt2

Explanation

Solution

Given, 2tan1(cosx)=tan1(2cosecx)2\,tan^{-1} (cos\,x) = tan^{-1} (2 \,cosec\,x)
tan12cosx1cos2x=tan1(2sinx)\Rightarrow tan ^{-1} \frac{2 \,cos \,x}{1-cos ^{2} \,x}=\tan ^{-1}\left(\frac{2}{sin \,x}\right)
2cosx1cos2x=2sinx\Rightarrow \frac{2\,cos\, x}{1- cos ^{2} x}=\frac{2}{\sin \,x}
cosxsin2x=1sinx\Rightarrow \frac{cos \,x}{sin ^{2} \,x}=\frac{1}{sin \,x}
cosxsinx=1\Rightarrow \frac{cos\, x}{sin\, x}=1
[sinx=0][\because sin x=0]
tanx=1\Rightarrow tan \, x=1
x=π4\Rightarrow x = \frac{\pi}{4}
Now, sinx+cosx=sinπ4+cosπ4sin\,x + cos\,x = sin \frac{\pi}{4} + cos \frac{\pi}{4}
=12+12=2=\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}=\sqrt{2}