Question
Mathematics Question on Differential equations
If (2+sinx)dxdy+(y+1)cosx=0 and y(0)=1, then y(2π) is equal to :
A
−32
B
−31
C
34
D
31
Answer
31
Explanation
Solution
(2+sinx)dxdy+(y+1)cosx=0
y(0)=1,y(2π) = ?
y+11dy+2+sinxcosxdx=0
In∣y+1∣+In(2+sinx)=InC
(y+1)(2+sinx)=C
Put x=0,y=1
(1+1)⋅2=C⇒C=4
Now, (y+1)(2+sinx)=4
For, x=2π
(y+1)(2+1)=4
y+1=34
y=34−1=31