Solveeit Logo

Question

Mathematics Question on Trigonometric Identities

If 2sin(θ+π3)=cos(θπ6),2 \sin \left( \theta + \frac{\pi}{3}\right) = \cos \left( \theta -\frac{\pi}{6}\right) , then tanθ=\tan \, \theta =

A

3\sqrt{3}

B

13- \frac{1}{\sqrt{3}}

C

13\frac{1}{\sqrt{3}}

D

3- \sqrt{3}

Answer

3- \sqrt{3}

Explanation

Solution

We have, 2sin(θ+π3)=cos(θπ6)2 \sin \left(\theta+\frac{\pi}{3}\right)=\cos \left(\theta-\frac{\pi}{6}\right)
2[sinθcosπ3+cosθsinπ3]\Rightarrow 2\left[\sin \theta \cos \frac{\pi}{3}+\cos \theta \sin \frac{\pi}{3}\right]
=cosθcosπ6+sinθsinπ6= \cos \theta \cos \frac{\pi}{6}+\sin \theta \sin \frac{\pi}{6}
2[sinθ2+3cosθ2]=32cosθ+12sinθ\Rightarrow 2\left[\frac{\sin \theta}{2}+\frac{\sqrt{3} \cos \theta}{2}\right]=\frac{\sqrt{3}}{2} \cos \theta+\frac{1}{2} \sin \theta
2sinθ+23cosθ=3cosθ+sinθ\Rightarrow 2 \sin \theta+2 \sqrt{3} \cos \theta=\sqrt{3} \cos \theta+\sin \theta
sinθ=3cosθ\Rightarrow \sin \theta=-\sqrt{3} \cos \theta
tanθ=3\Rightarrow \tan \theta=-\sqrt{3}