Solveeit Logo

Question

Question: If \[2{\sin ^2}\theta - 5\sin \theta + 2 > 0,\theta \in (0,2\pi )\] then \[\theta \in \] \(\left( ...

If 2sin2θ5sinθ+2>0,θ(0,2π)2{\sin ^2}\theta - 5\sin \theta + 2 > 0,\theta \in (0,2\pi ) then θ\theta \in
(A)(5π6,2π)\left( {\text{A}} \right)\left( {\dfrac{{5\pi }}{6},2\pi } \right)
(B)(0,π6)(5π6,2π)\left( {\text{B}} \right)\left( {{\text{0,}}\dfrac{{{\pi }}}{{\text{6}}}} \right) \cup \left( {\dfrac{{5\pi }}{6},2\pi } \right)
(C)(0,π6)\left( {\text{C}} \right)\left( {{\text{0,}}\dfrac{{{\pi }}}{{\text{6}}}} \right)
(D)(π80,π6)\left( {\text{D}} \right)\left( {\dfrac{\pi }{{80}}{\text{,}}\dfrac{{{\pi }}}{{\text{6}}}} \right)

Explanation

Solution

To solve this, first find the roots for sinθ\sin \theta consider it as the quadratic equation and the find the roots
Secondly, use the limit to find the value θ\theta \in .
Here we go.

Complete step-by-step answer:
It is given that, 2sin2θ5sinθ+2>0,θ(0,2π)2{\sin ^2}\theta - 5\sin \theta + 2 > 0,\theta \in (0,2\pi )
Consider,
2sin2θ5sinθ+2=02{\sin ^2}\theta - 5\sin \theta + 2 = 0
Take sinθ=x\sin \theta = x
Then, 2x25x+2=02{x^2} - 5x + 2 = 0
Using the formula x=b±b24ac2ax = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}} for ax2+bx+ca{x^2} + bx + c
Here, b=5b = - 5,a=2a = 2,c=2c = 2
Substitute the value in the formula, we get
x=(5)±524(2)(2)2(2)x = \dfrac{{ - ( - 5) \pm \sqrt {{5^2} - 4(2)(2)} }}{{2(2)}}
Minus of minus is plus
x=(5)±524(2)(2)2(2)x = \dfrac{{(5) \pm \sqrt {{5^2} - 4(2)(2)} }}{{2(2)}}
On squaring the inner terms and multiply that we get,
x=5±25164x = \dfrac{{5 \pm \sqrt {25 - 16} }}{4}
Let us subtract the square root terms, we get
x=5±94x = \dfrac{{5 \pm \sqrt 9 }}{4}
Taking the square root of 9\sqrt 9 is33
x=5±34x = \dfrac{{5 \pm 3}}{4}
Separate the terms
x=5+34,534x = \dfrac{{5 + 3}}{4},\dfrac{{5 - 3}}{4}
Further simplify,
x=84,24x = \dfrac{8}{4},\dfrac{2}{4}
On dividing the terms we get,
x=2,12x = 2,\dfrac{1}{2}
Substitute x=sinθx = \sin \theta
We can write it as, sinθ=2,12\sin \theta = 2,\dfrac{1}{2}
For four given we can write, equal to is substitute by greater symbol
sinθ>2,12\sin \theta > 2,\dfrac{1}{2}
Also we can write it as,
(sinθ2)(sinθ12)>0(\sin \theta - 2)(\sin \theta - \dfrac{1}{2}) > 0
Here, in trigonometry, sinθ\sin \theta values lie in between [1,1][ - 1,1]
(sinθ2)(\sin \theta - 2) lie in between[12,12][ - 1 - 2,1 - 2]
That is, (sinθ2)(\sin \theta - 2) lie in between [3,1][ - 3, - 1]
We can write this as 3sinθ21 - 3 \leqslant \sin \theta - 2 \leqslant - 1
Next we can take 1sinθ1- 1 \leqslant \sin \theta \leqslant 1
112sinθ12112- 1 - \dfrac{1}{2} \leqslant \sin \theta - \dfrac{1}{2} \leqslant 1 - \dfrac{1}{2}
32sinθ1212- \dfrac{3}{2} \leqslant \sin \theta - \dfrac{1}{2} \leqslant \dfrac{1}{2}
Then,
The value (sinθ2)(\sin \theta - 2) will never be zero
So, (sinθ12)(\sin \theta - \dfrac{1}{2}) is less than 00
That is, (sinθ12)<0(\sin \theta - \dfrac{1}{2}) < 0
\therefore We can write it as, sinθ<12\sin \theta < \dfrac{1}{2}
Take the sin\sin left hand side to right hand side, that is, we can write it as inverse sign
θ<sin112\theta < {\sin ^{ - 1}}\dfrac{1}{2}
sin112=π6{\sin ^{ - 1}}\dfrac{1}{2} = \dfrac{\pi }{6}
θ<π6\theta < \dfrac{\pi }{6}
If we draw a straight line to x=0.5x = 0.5 then the graph will cut the points 3030^\circ and 150{150^\circ },
Given, θ(0,2π)\theta \in (0,2\pi )
Here we take π=180\pi = {180^ \circ }
We find θ<π6\theta < \dfrac{\pi }{6} then,
\left( {{0^\circ },{{30}^\circ }} \right)$$$$({150^\circ },{360^\circ })
By radians we can write it as,
(0.π6)(5π6,2π)\left( {0.\dfrac{\pi }{6}} \right) \cup \left( {\dfrac{{5\pi }}{6},2\pi } \right)

So, the correct answer is “Option C”.

Note: Here, the sum we solve is the long method, we won’t solve like this, but here we want to understand with basics, so that we solve it with explanations each and every step.
In trigonometric function sinθ,cosθ\sin \theta ,\cos \theta value lies between [1,1][ - 1,1] it is an important note, except that others all have different limits.
These types of sum first find the limits of a given trigonometric function; it is useful to negotiate unwanted values.