Solveeit Logo

Question

Question: If \(2{\sin ^2}\theta - 5\sin \theta + 2 > 0,\,\theta \in \left( {0,2\pi } \right)\), then \(\theta ...

If 2sin2θ5sinθ+2>0,θ(0,2π)2{\sin ^2}\theta - 5\sin \theta + 2 > 0,\,\theta \in \left( {0,2\pi } \right), then θ\theta \in
A. (5π6,2π)\left( {\dfrac{{5\pi }}{6},2\pi } \right)
B. (0,π6)(5π6,2π)\left( {0,\dfrac{\pi }{6}} \right) \cup \left( {\dfrac{{5\pi }}{6},2\pi } \right)
C. (0,π6)\left( {0,\dfrac{\pi }{6}} \right)
D. (π80,π6)\left( {\dfrac{\pi }{{80}},\dfrac{\pi }{6}} \right)

Explanation

Solution

First, substitute a variable at the place of sinx\sin x. Now factor the equation and find the roots of the equation. Now, substitute back sinx\sin x in place of the variable. Cancel out one factor as sinx\sin x cannot be greater than 1. Now find the interval where sinx\sin x is less than 12\dfrac{1}{2}. Also include the 3rd3^{rd} and 4th4^{th} interval, as the value of sinx\sin x is negative in that interval. The interval derived is the final answer.

Complete step-by-step solution:
Given: - 2sin2θ5sinθ+2>02{\sin ^2}\theta - 5\sin \theta + 2 > 0
Let u=sinθu = \sin \theta . So,
2u25u+2>02{u^2} - 5u + 2 > 0
Now, factor the equation on the left side,
\Rightarrow 2u24uu+2>02{u^2} - 4u - u + 2 > 0
Factor out 2u from the first group and -1 from the second group,
\Rightarrow 2u(u2)1(u2)>02u\left( {u - 2} \right) - 1\left( {u - 2} \right) > 0
Now factor out (u-2) from both groups,
\Rightarrow (2u1)(u2)>0\left( {2u - 1} \right)\left( {u - 2} \right) > 0
As we know that, if (xa)(xb)>0\left( {x - a} \right)\left( {x - b} \right) > 0 and a<ba < b. Then, x<ax < a or x>bx > b. So,
\Rightarrow 2u1<02u - 1 < 0 or u2>0u - 2 > 0
Move the constant on the right side,
\Rightarrow 2u<12u < 1 or u>2 u > 2
Divide 2u<12u < 1 by 2,
\Rightarrow u<12u < \dfrac{1}{2} or u>2 u > 2
Now, substitute back sinx\sin x in place of u.
\Rightarrow sinx<12\sin x < \dfrac{1}{2} or sinx>2 \sin x > 2
Since the value of sinx\sin x oscillates between -1 and 1. So, sinx\sin x cannot be greater than 1. Thus, discard sinx>2\sin x > 2.
Then,
sinx<12\sin x < \dfrac{1}{2}
Since, sinx=sinπ6\sin x = \sin \dfrac{\pi }{6} and sinx=sin5π6\sin x = \sin \dfrac{{5\pi }}{6}. Then,
x<π6x < \dfrac{\pi }{6} or x>5π6x > \dfrac{{5\pi }}{6}.
Since the value of sinx\sin x is negative in the 3rd and 4th quadrant. So,
x(0,π6)x \in \left( {0,\dfrac{\pi }{6}} \right) or x(5π6,2π)x \in \left( {\dfrac{{5\pi }}{6},2\pi } \right)
Thus, x(0,π6)(5π6,2π)x \in \left( {0,\dfrac{\pi }{6}} \right) \cup \left( {\dfrac{{5\pi }}{6},2\pi } \right)

Hence, option (B) is the correct answer.

Note: The students are likely to make mistakes in questions when finding the roots for > sign.
For e.g.,
If (x2)(x5)<0\left( {x - 2} \right)\left( {x - 5} \right) < 0, then 2<x<52 < x < 5.
If (x2)(x6)>0\left( {x - 2} \right)\left( {x - 6} \right) > 0, then x<2x < 2 and x>6x > 6.
Also, keep in mind the number of factors will never exceed the highest power of the polynomial. Also, students can always check if the factors are correct or not by substituting the values in the expression, the expression turns out to be zero when we substitute the correct values.